Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Polynomial evaluation and interpolation on special sets of points

Published: 01 August 2005 Publication History

Abstract

We give complexity estimates for the problems of evaluation and interpolation on various polynomial bases. We focus on the particular cases when the sample points form an arithmetic or a geometric sequence, and we discuss applications, respectively, to computations with linear differential operators and to polynomial matrix multiplication.

References

[1]
Abramov, S.A., Rational solutions of linear differential and difference equations with polynomial coefficients. Zh. Vychisl. Mat. i Mat. Fiz. v29 i11. 1611-1620, 1757.
[2]
Aho, A.V., Steiglitz, K. and Ullman, J.D., Evaluating polynomials at fixed sets of points. SIAM J. Comput. v4 i4. 533-539.
[3]
Beckermann, B. and Labahn, G., A uniform approach for Hermite Padé and simultaneous Padé approximants and their matrix-type generalizations. Numer. Algorithms. v3 i1--4. 45-54.
[4]
Beckermann, B. and Labahn, G., A uniform approach for the fast computation of matrix-type Padé approximants. SIAM J. Matrix Anal. Appl. v15 i3. 804-823.
[5]
D. Bini, V.Y. Pan, Polynomial and Matrix Computations. vol. 1. Birkhäuser, Boston Inc., Boston, MA, 1994.
[6]
Bluestein, L.I., A linear filtering approach to the computation of the discrete Fourier transform. IEEE Trans. Electroacoustics. vAU-18. 451-455.
[7]
Borodin, A. and Moenck, R.T., Fast modular transforms. J. Comput. System Sci. v8 i3. 366-386.
[8]
A. Bostan, P. Gaudry, É. Schost, Linear recurrences with polynomial coefficients and computation of the Cartier--Manin operator on hyperelliptic curves, in: International Conference on Finite Fields and Applications Toulouse 2003, Lecture Notes in Computer Science, vol. 2948, Springer, Berlin, 2004, pp. 40--58.
[9]
Bostan, A., Lecerf, G. and Schost, É., Tellegen's principle into practice. In: ISSAC'03, ACM Press, New York. pp. 37-44.
[10]
P. Bürgisser, M. Clausen, M.A. Shokrollahi, Algebraic complexity theory, Grundlehren der mathematischen Wissenschaften, vol. 315, Springer, Berlin, 1997.
[11]
Cantor, D.G. and Kaltofen, E., On fast multiplication of polynomials over arbitrary algebras. Acta Inform. v28 i7. 693-701.
[12]
D.V. Chudnovsky, G.V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, in: Ramanujan revisited (Urbana-Champaign, IL, 1987). Academic Press, Boston, MA, 1988, pp. 375--472.
[13]
von zur Gathen, J. and Gerhard, J., Modern Computer Algebra. 1999. Cambridge University Press, Cambridge.
[14]
C.F. Gauss, Summatio quarundam serierum singularium, Opera, vol. 2, Göttingen: Gess. d. Wiss., 1863 pp. 9--45.
[15]
Gerhard, J., Modular algorithms for polynomial basis conversion and greatest factorial factorization. In: RWCA'00, pp. 125-141.
[16]
Giorgi, P., Jeannerod, C.-P. and Villard, G., On the complexity of polynomial matrix computations. In: ISSAC'03, ACM Press, New York. pp. 135-142.
[17]
Goldman, J. and Rota, G.-C., On the foundations of combinatorial theory, IV: finite vector spaces and Eulerian generating functions. . Stud. Appl. Math. v49. 239-258.
[18]
Hanrot, G., Quercia, M. and Zimmermann, P., The middle product algorithm. I. Appl. Algebra Eng. Comm. Comput. v14 i6. 415-438.
[19]
Heine, E., Untersuchungen über die Reihe 1+(1-qα)(1-qβ)(1-q)(1-qγ)·x+(1-qα)(1-qα+1)(1-qβ)(1-qβ+1)(1-q)(1-q2)(1-qγ)(1-qγ+1)·x2+. J. Reine Angew. Math. v34. 285-328.
[20]
Horowitz, E., A fast method for interpolation using preconditioning. Inform. Proc. Lett. v1 i4. 157-163.
[21]
Kaltofen, E., Challenges of symbolic computation: my favorite open problems. . With an additional open problem by Robert M. Corless and David J. Jeffrey, J. Symbolic Comput. v29 i6. 891-919.
[22]
Karatsuba, A. and Ofman, Y., Multiplication of multidigit numbers on automata. Soviet Math. Dokl. v7. 595-596.
[23]
D.E. Knuth, The Art of Computer Programming, vol. 2, Seminumerical Algorithms, third ed., Addison-Wesley, Reading, MA, 1998.
[24]
R.T. Moenck, A. Borodin, Fast modular transforms via division, 13th Annual IEEE Symposium on Switching and Automata Theory, 1972, pp. 90--96.
[25]
Montgomery, P.L., An FFT extension of the elliptic curve method of factorization, Ph.D. Thesis. 1992. University of California, Los Angeles, CA.
[26]
Paule, P., Greatest factorial factorization and symbolic summation. J. Symbolic Comput. v20 i3. 235-268.
[27]
Petkovšek, M., Hypergeometric solutions of linear recurrences with polynomial coefficients. J. Symbolic Comput. v14 i2-3. 243-264.
[28]
Rabiner, L.R., Schafer, R.W. and Rader, C.M., The chirp z-transform algorithm and its application. Bell System Tech. J. v48. 1249-1292.
[29]
S. Roman, The Umbral Calculus. Pure and Applied Mathematics, vol. 111, Academic Press Inc., New York, 1984.
[30]
H.A. Rothe, Formulae de serierum reversione demonstratio universalis signis localibus combinatorico--analyticorum vicariis exhibita, Leipzig, 1793.
[31]
Schoenberg, I.J., On polynomial interpolation at the points of a geometric progression. Proc. Roy. Soc. Edinburgh Section A. v90 i3--4. 195-207.
[32]
Schönhage, A., Schnelle multiplikation von polynomen über Körpern der charakteristik 2. Acta Inform. v7. 395-398.
[33]
Schönhage, A. and Strassen, V., Schnelle multiplikation großer zahlen. Computing. v7. 281-292.
[34]
V. Shoup, 1996--2004. NTL: a library for doing number theory, http://www.shoup.net.
[35]
J. Stirling, Methodus Differentialis: sive Tractatus de Summatione et Interpolatione Serierum Infinitarum, Gul. Bowyer, London, Engl. transl. by Holliday, J. The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series, vol. 1749, 1730.
[36]
Storjohann, A., High-order lifting. In: ISSAC'02, ACM Press, New York. pp. 246-254.
[37]
Strassen, V., Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten. Numer. Math. v20. 238-251.
[38]
B. Tellegen, A general network theorem with applications, Technical Report 7, Philips Research, 1952, pp. 259--269.
[39]
Thomé, É., Fast computation of linear generators for matrix sequences and application to the block Wiedemann algorithm. In: ISSAC'01, ACM Press, New York. pp. 323-331.
[40]
Thomé, É., Subquadratic computation of vector generating polynomials and improvement of the block Wiedemann algorithm. J. Symbolic Comput. v33 i5. 757-775.
[41]
Villard, G., Computing Popov and Hermite forms of polynomial matrices. In: ISSAC'96, ACM Press, New York. pp. 251-258.
[42]
R. Crandall, C. Pomerance, Prime numbers, in: A Computational Perspective, Springer, 2001, pp. xvi+545.

Cited By

View all
  • (2024)Advancing Scalability in Decentralized Storage: A Novel Approach to Proof-of-Replication via Polynomial EvaluationAdvances in Cryptology – CRYPTO 202410.1007/978-3-031-68379-4_1(3-39)Online publication date: 18-Aug-2024
  • (2022)Interactive oracle proofs of proximity to algebraic geometry codesProceedings of the 37th Computational Complexity Conference10.4230/LIPIcs.CCC.2022.30(1-45)Online publication date: 20-Jul-2022
  • (2022)On the Complexity of Symbolic ComputationProceedings of the 2022 International Symposium on Symbolic and Algebraic Computation10.1145/3476446.3535493(3-12)Online publication date: 4-Jul-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Complexity
Journal of Complexity  Volume 21, Issue 4
Festschrift for the 70th birthday of Arnold Schönhage
August 2005
314 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 August 2005

Author Tags

  1. Complexity
  2. Polynomial evaluation and interpolation
  3. Polynomial matrix multiplication
  4. Transposition principle

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Advancing Scalability in Decentralized Storage: A Novel Approach to Proof-of-Replication via Polynomial EvaluationAdvances in Cryptology – CRYPTO 202410.1007/978-3-031-68379-4_1(3-39)Online publication date: 18-Aug-2024
  • (2022)Interactive oracle proofs of proximity to algebraic geometry codesProceedings of the 37th Computational Complexity Conference10.4230/LIPIcs.CCC.2022.30(1-45)Online publication date: 20-Jul-2022
  • (2022)On the Complexity of Symbolic ComputationProceedings of the 2022 International Symposium on Symbolic and Algebraic Computation10.1145/3476446.3535493(3-12)Online publication date: 4-Jul-2022
  • (2021)Shorter and Faster Post-Quantum Designated-Verifier zkSNARKs from LatticesProceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security10.1145/3460120.3484572(212-234)Online publication date: 12-Nov-2021
  • (2021)On the Complexity Exponent of Polynomial System SolvingFoundations of Computational Mathematics10.1007/s10208-020-09453-021:1(1-57)Online publication date: 1-Feb-2021
  • (2020)Computing the N-th term of a q-holonomic sequenceProceedings of the 45th International Symposium on Symbolic and Algebraic Computation10.1145/3373207.3404060(46-53)Online publication date: 20-Jul-2020
  • (2019)Implementations of Efficient Univariate Polynomial Matrix Algorithms and Application to Bivariate ResultantsProceedings of the 2019 International Symposium on Symbolic and Algebraic Computation10.1145/3326229.3326272(235-242)Online publication date: 8-Jul-2019
  • (2017)Algorithms for Structured Linear Systems Solving and Their ImplementationProceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3087604.3087659(205-212)Online publication date: 23-Jul-2017
  • (2017)Popov Form Computation for Matrices of Ore PolynomialsProceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3087604.3087650(253-260)Online publication date: 23-Jul-2017
  • (2017)The Truncated Fourier Transform for Mixed RadicesProceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3087604.3087636(261-268)Online publication date: 23-Jul-2017
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media