Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
Skip header Section
Text Entry Systems: Mobility, Accessibility, UniversalityMarch 2007
Publisher:
  • Morgan Kaufmann Publishers Inc.
  • 340 Pine Street, Sixth Floor
  • San Francisco
  • CA
  • United States
ISBN:978-0-12-373591-1
Published:12 March 2007
Pages:
344
Skip Bibliometrics Section
Reflects downloads up to 03 Sep 2024Bibliometrics
Skip Abstract Section
Abstract

Text entry has never been so important as it is today. This is in large part due to the phenomenal, relatively recent success of mobile computing, text messaging on mobile phones, and the proliferation of small devices like the Blackberry and Palm Pilot. Compared with the recent past, when text entry was primarily through the standard "qwerty" keyboard, people today use a diverse array of devices with the number and variety of such devices ever increasing. The variety is not just in the devices, but also in the technologies used: Entry modalities have become more varied and include speech recognition and synthesis, handwriting recognition, and even eye-tracking using image processing on web-cams. Statistical language modeling has advanced greatly in the past ten years and so therein is potential to facilitate and improve text entry--increasingly, the way people communicate. This book consists of four parts, and covers these areas: Guidelines for Designing Better Entry Systems (including research methodologies, measurement, and language modelling); Devices and Modalities; Languages of the world and entry systems in those languages; and variety in users and their difficulties with text entry--and the possible design and guideline solutions for those individual user groups. This book covers different aspects of text entry systems and offers prospective researchers and developers * global guidelines for conducting research on text entry, in terms of design strategy, evaluation methodology, and requirements; * history and current state of the art of entry systems, including coverage of recent research topics; * specific guidelines for designing entry systems for a specific target, depending on devices, modalities, language, and different physical conditions of users

References

  1. Carroll, J. M., & Rosson, M. B. (1987). The paradox of the active user. Interfacing thought: Cognitive aspects of human-computer interaction (pp.80-111). Cambridge, MA: MIT Press. Google ScholarGoogle Scholar
  2. Clarkson, E., Clawson, J., Lyons, K., & Starner, T. (2005). An empirical study of typing rates on mini-QWERTY keyboards. Proceedings of the CHI 2005 Conference on Human Factors in Computing Systems (pp.1288-1291). New York: ACM Press. Google ScholarGoogle Scholar
  3. Deininger, R. L. (1960). Human factors engineering studies of the design and use of pushbutton telephone sets. Bell System Technical Journal, 39 , 995-1012.Google ScholarGoogle ScholarCross RefCross Ref
  4. Dvorak, A., & Dealey, D. L. (1936). Typewriter keyboard. U.S. Patent 2,040,248. U.S. Patent Office.Google ScholarGoogle Scholar
  5. Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47 , 381-391.Google ScholarGoogle Scholar
  6. Goldberg, D., & Richardson, C. (1993). Touch-typing with a stylus. Proceedings of the INTERCHI '93 Conference on Human Factors in Computing Systems (pp.80-87). New York: ACM Press. Google ScholarGoogle Scholar
  7. GSM Association (2006). GSM world: http://www.gsmworld.com/services/messaging.shtmlGoogle ScholarGoogle Scholar
  8. Isokoski, P., & Raisamo, R. (2000). Device independent text input: A rationale and an example. Proceedings of the Working Conference on Advanced Visual Interfaces (pp.76-83). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Karat, C.-M., Halverson, C., Karat, J., & Horn, D. (1999). Patterns of entry and correction in large vocabulary continuous speech recognition systems. Proceedings of the Conference on Human Factors in Computing Systems--CHI (pp.568-575). New York: ACM Press. Google ScholarGoogle Scholar
  10. Karat, J., Horn, D., Halverson, C., & Karat, C.-M. (2000). Overcoming unusability: developing efficient strategies in speech recognition systems. Extended Abstracts of the Conference on Human Factors in Computing Systems--CHI (pp.141-142). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kristensson, P.-O., & Zhai S. (2004). SHARK: A large vocabulary shorthand writing system for pen-based computers. Proceedings of the ACM Symposium on User Interface Software and Technology (UIST) (pp.43-52). New York: ACM Press. Google ScholarGoogle Scholar
  12. Költringer, T., & Grechenig, T. (2004). Comparing the immediate usability of Graffiti 2 and Virtual Keyboard. Extended Abstracts on Human Factors in Computing Systems--CHI (pp.1175-1178). New York: ACM Press. Google ScholarGoogle Scholar
  13. Levy, D. (2002). The Fastap keypad and pervasive computing. Proceedings of the Pervasive Conference (pp.58-68). Heidelberg: Springer-Verlag. Google ScholarGoogle Scholar
  14. Liebowitz, S. J., & Margolis, S. E. (1990). The fable of keys. Journal of Law and Economics, 33 , 1-25.Google ScholarGoogle ScholarCross RefCross Ref
  15. Luo, L., & John, B. E. (2005). Predicting task execution time on handheld devices using the keystroke-level model. Extended Abstracts on Human Factors in Computing Systems--CHI (pp.1605-1608). New York: ACM Press. Google ScholarGoogle Scholar
  16. Lyons, K., Starner, T., Plaisted, D., Fusia, J., Lyons, A., Drew, A., & Looney, E. W. (2004). Twiddler typing: One-handed chording text entry for mobile phones. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '04), 24-29 April 2004, Vienna (pp.671-678). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. MacKenzie, I. S. (1992). Fitts' law as a research and design tool in human-computer interaction. Human-Computer Interaction, 7 , 91-139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. MacKenzie, I. S., Nonnecke, R. B., Riddersma, S., McQueen, C., & Meltz, M. (1994). Alphanumeric entry on pen-based computers. International Journal of Human-Computer Studies, 41 , 775-792. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. MacKenzie, I. S., & Zhang, S. X. (1997). The immediate usability of Graffiti. Proceedings of Graphics Interface 1997, 21-23 May 1997, Kelowna, BC (pp.129-137). Toronto: Canadian Information Processing Society. Google ScholarGoogle Scholar
  20. MacKenzie, I. S., & Zhang, S. X. (1999). The design and evaluation of a high-performance soft keyboard. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '99), 15-20 May 1999, Pittsburgh (pp.25-31). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. MacKenzie, I. S., Zhang, S. X., & Soukoreff, W. (1999). Text entry using soft keyboards. Behaviour and Information Technology, 18 , 235-244.Google ScholarGoogle ScholarCross RefCross Ref
  22. Mankoff, J., & Abowd, G. D. (1998). Cirrin: A word-level unistroke keyboard for pen input. Proceedings of the UIST (pp.213-214). New York: ACM Press. Google ScholarGoogle Scholar
  23. Meyer, A. (1995). Pen computing: A technology overview and a vision. ACM SIGCHI Bulletin, 27 , 46-90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Myers, B. A. (1998). A brief history of human-computer interaction technology. Interactions, 5 , 44-54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Perlin, K. (1998). Quikwriting: Continuous stylus-based text entry. Proceedings of the ACM Symposium on User Interface Software and Technology (UIST '98), 1-4 November 1998, San Francisco (pp.215-216). New York: ACM Press. Google ScholarGoogle Scholar
  26. Sholes, G. L., Glidden, C. & Soule, S. W. (1868). Improvement in type-writing machines. U.S. Patent 79,868. U.S. Patent Office.Google ScholarGoogle Scholar
  27. Sirisena, A. (2002). Mobile text entry . Christchurch: University of Canterbury Department of Computer Science.Google ScholarGoogle Scholar
  28. Smith, B. A., & Zhai, S. (2001). Optimised virtual keyboards with and without alphabetical ordering--A novice user study. Proceedings of INTERACT 2001 , Tokyo, Japan (pp.92-99).Google ScholarGoogle Scholar
  29. Suhm, B., Myers, B., & Waibel, A. (2001). Multimodal error correction for speech user interfaces. ACM Transactions on Computer-Human Interaction, 8 , 60-98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Venolia, D., & Neiberg, F. (1994). T-Cube: A fast, self-disclosing pen-based alphabet. Proceedings of CHI '94 Conference on Human Factors in Computing Systems (pp.265-270). New York: ACM Press. Google ScholarGoogle Scholar
  31. Wobbrock, J. O., Myers, B. A., & Aung, H. H. (2004). Writing with a joystick: A comparison of date stamp, selection keyboard, and EdgeWrite. Proceedings of the Conference on Graphics Interface (GI), London, Ontario (pp.1-8). Google ScholarGoogle Scholar
  32. Wobbrock, J. O., Myers, B. A., & Kembel, J. A. (2003). Edge Write: A stylus-based text entry method designed for high accuracy and stability of motion. Proceedings of the ACM Symposium on User Interface Software and Technology (UIST '03), 2-5 November 2003, Vancouver, BC (pp.61-70). New York: ACM Press. Google ScholarGoogle Scholar
  33. Yamada, H. (1980). A historical study of typewriters and typing methods: From the position of planning Japanese parallels. Journal of Information Processing, 2 , 175-202.Google ScholarGoogle Scholar
  34. Zhai, S., Hunter, M., & Smith, B. A. (2000). The Metropolis keyboard--an exploration of quantitative techniques for virtual keyboard design. Proceedings of the 13th Annual ACM Symposium on User Interface Software and Technology (UIST) (pp.119-128). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Zhai, S., Hunter, M., & Smith, B. A. (2002). Performance optimization of virtual keyboards. Human-Computer Interaction, 17 , 229-269.Google ScholarGoogle ScholarCross RefCross Ref
  36. Zhai, S., & Kristensson, P.-O. (2003). Shorthand writing on stylus keyboard. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI) (pp.97-104). New York: ACM Press. Google ScholarGoogle Scholar
  37. Aoe, J. (1989). An efficient digital search algorithm by using a double-array structure. IEEE Transactions on Software Engineering, 15 , 1066-1077. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Bell, T., Cleary, J., & Witten, I. H. (1990). Text compression . Upper Saddle River, NJ: Prentice Hall. Google ScholarGoogle Scholar
  39. Charniak, E. (1993). Statistical language learning . Cambridge, MA: MIT Press. Google ScholarGoogle Scholar
  40. Gale, W., & Sampson, G. (1995). Good - Turing frequency estimation without tears. Journal of Quantitative Linguistics, 2 , 217-237.Google ScholarGoogle ScholarCross RefCross Ref
  41. Gao, J., Suzuki, H., & Yu, B. (2006). Approximation lasso methods for language modeling. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics (pp.225-232). Morristown, NJ: Association for Computational Linguistics. Google ScholarGoogle Scholar
  42. Good, I. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40 , 237-264.Google ScholarGoogle Scholar
  43. Jelinek, F. (1997). Statistical methods for speech recognition . Cambridge, MA: MIT Press. Google ScholarGoogle Scholar
  44. Lafferty, J., MaCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In International Conference on Machine Learning . Williams College Massachusetts, 28th June-1st July 2001. Google ScholarGoogle Scholar
  45. Mandelbrot, B. (1952). An informational theory of the statistical structure of language. In Symposium on Applications of Communication Theory (pp.486-500). London: Butterworth.Google ScholarGoogle Scholar
  46. Manning, C. D., & Schutze, H. (1999). Foundations of statistical natural language processing. Cambridge, MA: MIT Press. Google ScholarGoogle Scholar
  47. Shieber, S., & Baker, E. (2003). Abbreviated text input. In International Conference on Intelligent User Interfaces (pp.293-296). Miami, USA, January 12-15th 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Tanaka-Ishii, K. (2007). Predictive text entry techniques using adaptive language models. Journal of Natural Language Engineering . In press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Tanaka-Ishii, K., Hayakawa, D., & Takeichi, M. (2003). Acquiring vocabulary for predictive text entry through dynamic reuse of a small user corpus. In Proceedings of the 41st Annual Meeting for Association of Computational Linguistics (pp.407-414). Morristown, NJ: Association for Computational Linguistics. Google ScholarGoogle Scholar
  50. Tanaka-Ishii, K., Inutsuka, Y., & Takeichi, M. (2001). Personalization of text input systems for mobile phones. In Proceedings of the Sixth Natural Language Processing Pacific Rim Symposium, November 27-30, 2001, Hitotsubashi Memorial Hall, National Center of Sciences, Tokyo, Japan, 2001 (pp.177-184).Google ScholarGoogle Scholar
  51. Yuan, W., Gao, J., & Suzuki, H. (2005). An empirical study on language model adaptation using a metric of domain similarity. In International Joint Conference on Natural Language Processing (pp.957-968). New York: Springer-Verlag.Google ScholarGoogle Scholar
  52. Zipf, G. (1949). Human behavior and the principle of least effort . Reading, MA: Addison-Wesley.Google ScholarGoogle Scholar
  53. Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction . Hillsdale, NJ: Erlbaum. Google ScholarGoogle Scholar
  54. Damerau, F. (1964). A technique for computer detection and correction of spelling errors. Communications of the ACM, 7 , 171-176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Evreinova, T., Evreinov, G., & Raisamo, R. (2004). Four-key text entry for physically challenged people. Adjunct Proceedings of the 8th ERCIM Workshop on User Interfaces for All (UI4ALL '04), 28-29 June 2004, Vienna .Google ScholarGoogle Scholar
  56. Gentner, D. R., Grudin, J. T., Larochelle, S., Norman, D. A., & Rumelhart, D. E. (1984). A glossary of terms including a classification of typing errors. In W. E. Cooper (Ed.), Cognitive aspects of skilled typewriting (pp.39-43). New York: Springer-Verlag.Google ScholarGoogle Scholar
  57. Gong, J., & Tarasewich, P. (2006). A new error metric for text entry method evaluation. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '06), 22-27 April 2006, Montréal (pp.471-474). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Grudin, J. T. (1984). Error patterns in skilled and novice transcription typing. In W. E. Cooper (Ed.), Cognitive aspects of skilled typewriting (pp.121-143). New York: Springer-Verlag.Google ScholarGoogle Scholar
  59. Ingmarsson, M., Dinka, D., & Zhai, S. (2004). TNT--a numeric keypad based text input method. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '04), 24-29 April 2004, Vienna (pp.639-646). New York: ACM Press. Google ScholarGoogle Scholar
  60. Isokoski, P., & Kaki, M. (2002). Comparison of two touchpad-based methods for numeric entry. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI'02), 20-25 April 2002, Minneapolis (pp.25-32). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Isokoski, P., & MacKenzie, I. S. (2003). Combined model for text entry rate development. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems (CHI '03), 5-10 April 2003, Ft. Lauderdale, FL (pp.752-753). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Levenshtein, V. I. (1965). Binary codes capable of correcting deletions, insertions, and reversals. Doklady Akademii Nauk SSSR 163 , 845-848.Google ScholarGoogle Scholar
  63. Lewis, J. R. (1999). Input rates and user preference for three small-screen input methods: Standard keyboard, predictive keyboard, and handwriting. Proceedings of the Human Factors and Ergonomics Society 43rd Annual Meeting, 27 September-1 October 1999, Houston (pp.425-428). Santa Monica, CA: Human Factors and Ergonomics Society.Google ScholarGoogle ScholarCross RefCross Ref
  64. Lyons, K., Starner, T., Plaisted, D., Fusia, J., Lyons, A., Drew, A., & Looney, E. W. (2004). Twiddler typing: One-handed chording text entry for mobile phones. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '04), 24-29 April 2004, Vienna (pp.671-678). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. MacKenzie, I. S. (2002a). Mobile text entry using three keys. Proceedings of the 2nd Nordic Conference on Human-Computer Interaction (NordiCHI '02) , 19-23 October 2002, Århus, Denmark (pp.27-34). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. MacKenzie, I. S. (2002b). A note on calculating text entry speed. Unpublished work. Available online at http://www.yorku.ca/mack/RN-TextEntrySpeed.htmlGoogle ScholarGoogle Scholar
  67. MacKenzie, I. S. (2002c). KSPC (keystrokes per character) as a characteristic of text entry techniques. Proceedings of the 4th International Symposium on Human-Computer Interaction with Mobile Devices and Services (Mobile HCI02), 18-20 September 2002, Pisa (pp.195-210). Berlin: Springer-Verlag. Google ScholarGoogle ScholarCross RefCross Ref
  68. MacKenzie, I. S., & Soukoreff, R. W. (2002a). Text entry for mobile computing: Models and methods, theory and practice. Human-Computer Interaction, 17 , 147-198.Google ScholarGoogle ScholarCross RefCross Ref
  69. MacKenzie, I. S., & Soukoreff, R. W. (2002b). A character-level error analysis technique for evaluating text entry methods. Proceedings of the 2nd Nordic Conference on Human-Computer Interaction (NordiCHI '02), 19-23 October 2002, Århus, Denmark (pp.243-246). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. MacKenzie, I. S., & Zhang, S. X. (1997). The immediate usability of Graffiti. Proceedings of Graphics Interface 1997, 21-23 May 1997, Kelowna, BC (pp.129-137). Toronto: Canadian Information Processing Society. Google ScholarGoogle Scholar
  71. MacKenzie, I. S., & Zhang, S. X. (1999). The design and evaluation of a high-performance soft keyboard. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '99), 15-20 May 1999, Pittsburgh (pp.25-31). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Magnuson, T., & Hunnicutt, S. (2002). Measuring the effectiveness of word prediction: The advantage of long-term use. Speech, Music and Hearing, 43 , 57-67.Google ScholarGoogle Scholar
  73. Matias, E., MacKenzie, I. S., & Buxton, W. (1996). One-handed touch-typing on a QWERTY keyboard. Human-Computer Interaction, 11 , 1-27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Morgan, H. L. (1970). Spelling correction in systems programs. Communications of the ACM, 13 , 90-94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88 , 1-15.Google ScholarGoogle Scholar
  76. Perlin, K. (1998). Quikwriting: Continuous stylus-based text entry. Proceedings of the ACM Symposium on User Interface Software and Technology (UIST '98), 1-4 November 1998, San Francisco (pp.215-216). New York: ACM Press. Google ScholarGoogle Scholar
  77. Rumelhart, D. E., & Norman, D. A. (1982). Simulating a skilled typist: A study of skilled cognitive-motor performance. Cognitive Science, 6 , 1-36.Google ScholarGoogle ScholarCross RefCross Ref
  78. Soukoreff, R. W., & MacKenzie, I. S. (2001). Measuring errors in text entry tasks: An application of the Levenshtein string distance statistic. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems (CHI '01), 31 March-5 April 2001, Seattle (pp.319-320). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Soukoreff, R. W., & MacKenzie, I. S. (2003). Metrics for text entry research: An evaluation of MSD and KSPC, and a new unified error metric. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '03), 5-10 April 2003, Ft. Lauderdale, FL (pp.113-120). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Soukoreff, R. W., & MacKenzie, I. S. (2004). Recent developments in text-entry error rate measurement. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems (CHI '04), 24-29 April 2004, Vienna (pp.1425-1428). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Venolia, D., & Neiberg, F. (1994). T-Cube: A fast, self-disclosing pen-based alphabet. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '94), 24-28 April 1994, Boston (pp.265-270). New York: ACM Press. Google ScholarGoogle Scholar
  82. Wagner, R. A., & Fischer, M. J. (1974). The string-to-string correction problem. Journal of the Association for Computing Machinery, 21 , 168-173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Wobbrock, J. O., Aung, H. H., Myers, B. A., & LoPresti, E. F. (2005a). Integrated text entry from power wheelchairs. Journal of Behaviour and Information Technology, 24 , 187-203.Google ScholarGoogle ScholarCross RefCross Ref
  84. Wobbrock, J. O., Aung, H. H., Rothrock, B., & Myers, B. A. (2005b). Maximizing the guessability of symbolic input. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems (CHI '05), 2-7 April 2005, Portland, OR (pp.1869-1872). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Wobbrock, J. O., & Myers, B. A. (2006a). Trackball text entry for people with motor impairments. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '06), 22-27 April 2006, Montréal (pp.479-488). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Wobbrock, J. O., & Myers, B. A. (2006b). In-stroke word completion. Proceedings of the ACM Symposium on User Interface Software and Technology (UIST '06), 15-18 October 2006, Montreux, Switzerland (pp.333-336). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Wobbrock, J. O., & Myers, B. A. (2006c). From letters to words: Efficient stroke-based word completion for trackball text entry. Proceedings of the ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '06), 23-25 October 2006, Portland, OR (pp.2-9). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Wobbrock, J. O., & Myers, B. A. (2006d). Analyzing the input stream for character-level errors in unconstrained text entry evaluations. Transactions on Computer-Human Interaction (TOCHI) , 13(4), 458-489. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Wobbrock, J. O., Myers, B. A., & Aung, H. H. (2004). Writing with a joystick: A comparison of date stamp, selection keyboard, and EdgeWrite. Proceedings of Graphics Interface 2004, 17-19 May 2004, London, ON (pp.1-8). Waterloo, ON: Canadian Human-Computer Communications Society. Google ScholarGoogle Scholar
  90. Wobbrock, J. O., Myers, B. A., & Hudson, S. E. (2003a). Exploring edge-based input techniques for handheld text entry. Proceedings of the 3rd International Workshop on Smart Appliances and Wearable Computing (IWSAWC'03). In 23rd International Conference on Distributed Computing Systems Workshops (ICDCSW '03), 19-22 May 2003, Providence, RI (pp.280-282). Los Alamitos, CA: IEEE Computer Society. Google ScholarGoogle ScholarCross RefCross Ref
  91. Wobbrock, J. O., Myers, B. A., & Kembel, J. A. (2003b). EdgeWrite: A stylus-based text entry method designed for high accuracy and stability of motion. Proceedings of the ACM Symposium on User Interface Software and Technology (UIST '03), 2-5 November 2003, Vancouver, BC (pp.61-70). New York: ACM Press. Google ScholarGoogle Scholar
  92. Wobbrock, J. O., Myers, B. A., & Rothrock, B. (2006). Few-key text entry revisited: Mnemonic gestures on four keys. Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '06), 22-27 April 2006, Montréal (pp.489-492). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Yamada, H. (1980). A historical study of typewriters and typing methods: From the position of planning Japanese parallels. Journal of Information Processing, 2 , 175-202.Google ScholarGoogle Scholar
  94. Agarwal, A., & Simpson, R. (2005). User modeling for individuals with disabilities: a pilot study of word prediction. Proceedings of the 7th International ACM SIGACCESS Conference on Computers and Accessibility--ASSETS '05 (pp.218-219). New York: ACM Press. Google ScholarGoogle Scholar
  95. Alsio, G., & Goldstein, M. (2000). Productivity prediction by extrapolation: Using workload memory as a predictor of target performance. Behaviour & Information Technology, 19 , 87-96.Google ScholarGoogle Scholar
  96. American Psychological Association (2001). Publication manual of the American Psychological Association (5th ed.) . Washington, DC: APA.Google ScholarGoogle Scholar
  97. Bailey, R. W. (1996). Human performance engineering: Designing high quality, professional user interfaces for computer products, applications, and systems (3rd ed.) . Upper Saddle River, NJ: Prentice Hall. Google ScholarGoogle Scholar
  98. Bellman, T., & MacKenzie, I. S. (1998). A probabilistic character layout strategy for mobile text entry. Proceedings of Graphics Interface '98 (pp.168-176). Toronto: Canadian Information Processing Society.Google ScholarGoogle Scholar
  99. Card, S. K., English, W. K., & Burr, B. J. (1978). Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a CRT. Ergonomics, 21 , 601-613.Google ScholarGoogle Scholar
  100. Card, S. K., Moran, T. P., & Newell, A. (1980). The keystroke-level model for user performance time with interactive systems. Communications of the ACM, 23 , 396-410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Cooper, A. (1999). The inmates are running the asylum . Indianapolis: Sams. Google ScholarGoogle Scholar
  102. Economist (2004). Je ne texte rien. The Economist, 10 July, Vol. 372 (p.85).Google ScholarGoogle Scholar
  103. Fleetwood, M. D., Byrne, M. D., Centgraf, P., Dudziak, K. Q., Lin, B., & Mogilev, D. (2002). An evaluation of the text-entry in Palm OS: Graffiti and the virtual keyboard. Proceedings of the Human Factors and Ergonomics 46th Annual Meeting--HFES 2002 (pp.617-621). Santa Monica, CA: Human Factors and Ergonomics Society.Google ScholarGoogle Scholar
  104. Gentner, D. R., Grudin, J. T., Larochelle, S., Norman, D. A., & Rumelhart, D. E. (1983). A glossary of terms including a classification of typing errors. In W. E. Cooper (Ed.), Cognitive aspects of skilled typewriting (pp.39-44). New York: Springer.Google ScholarGoogle Scholar
  105. Gong, J., Haggerty, B., & Tarasewich, P. (2005). An enhanced multitap text entry method with predictive next-letter highlighting. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems--CHI 2005 (pp.1399-1402). New York: ACM Press. Google ScholarGoogle Scholar
  106. Hwang, S., Geehyuk, L., Jeong, B., Lee, W., & Cho, H. (2005). FeelTip: Tactile input device for small wearable information appliances. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems--CHI 2005 (pp.1475-1478). New York: ACM Press. Google ScholarGoogle Scholar
  107. Isokoski, P., & Raisamo, R. (2004). Quikwriting as a multi-device text entry method. Proceedings of the Third Nordic Conference on Human-Computer Interaction--NordiCHI 2004 (pp.105-108). New York: ACM Press. Google ScholarGoogle Scholar
  108. James, C. L., & Reischel, K. M. (2001). Text input for mobile devices: Comparing model prediction to actual performance. Proceedings of the ACM Conference on Human Factors in Computing Systems--CHI '01 (pp.365-371). New York: ACM Press. Google ScholarGoogle Scholar
  109. Koltringer, T., & Grechenig, T. (2004). Comparing the immediate usability of Graffiti 2 and virtual keyboard. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems--CHI 2004 (pp.1175-1178). New York: ACM Press. Google ScholarGoogle Scholar
  110. Lyons, K., Starner, T., & Gane, B. (2006). Experimental evaluation of the Twiddler onehanded chording mobile keyboard. Human-Computer Interaction, 21 (4), 343-392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Lyons, M. J., Chan, C.-H., & Tetsutani, N. (2004). MouthType: Text entry by hand and mouth. Proceedings of the ACM Conference on Human Factors in Computing Systems--CHI 2004 (pp.1383-1386). New York: ACM Press. Google ScholarGoogle Scholar
  112. MacKenzie, I. S. (2002). Mobile text entry using three keys. Proceedings of the Second Nordic Conference on Human-Computer Interaction--NordiCHI 2002 (pp.27-34). New York: ACM Press. Google ScholarGoogle Scholar
  113. MacKenzie, I. S. (2003). Motor behaviour models for human-computer interaction. In J. M. Carroll (Ed.), HCI models, theories, and frameworks: Toward a multidisciplinary science (pp.27-54). San Francisco: Morgan Kaufmann.Google ScholarGoogle Scholar
  114. MacKenzie, I. S., Chen, J., & Oniszczak, A. (2006). Unipad: Single-stroke text entry with language-based acceleration. Proceedings of the Fourth Nordic Conference on Human-Computer Interaction--NordiCHI 2006 (pp.78-85). New York: ACM Press. Google ScholarGoogle Scholar
  115. MacKenzie, I. S., Kober, H., Smith, D., Jones, T., & Skepner, E. (2001). LetterWise: Prefix-based disambiguation for mobile text entry. Proceedings of the ACM Conference on User Interface Software and Technology--UIST 2001 (pp.111-120). New York: ACM Press. Google ScholarGoogle Scholar
  116. MacKenzie, I. S., Nonnecke, R. B., Riddersma, S., McQueen, C., & Meltz, M. (1994). Alphanumeric entry on pen-based computers. International Journal of Human-Computer Studies, 41 , 775-792. Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. MacKenzie, I. S., & Soukoreff, R. W. (2002a). A character-level error analysis technique for evaluating text entry methods. Proceedings of the Second Nordic Conference on Human-Computer Interaction--NordiCHI 2002 (pp.241-244). New York: ACM Press. Google ScholarGoogle Scholar
  118. MacKenzie, I. S., & Soukoreff, R. W. (2002b). Text entry for mobile computing: Models and methods, theory and practice. Human-Computer Interaction, 17 , 147-198.Google ScholarGoogle ScholarCross RefCross Ref
  119. MacKenzie, I. S., & Soukoreff, R. W. (2003). Phrase sets for evaluating text entry techniques. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems--CHI 2003 (pp.754-755). New York: ACM Press. Google ScholarGoogle Scholar
  120. MacKenzie, I. S., & Zhang, S. X. (1997). The immediate usability of Graffiti. Proceedings of Graphics Interface '97 (pp.120-137). Toronto: Canadian Information Processing Society. Google ScholarGoogle Scholar
  121. MacKenzie, I. S., & Zhang, S. X. (1999). The design and evaluation of a high-performance soft keyboard. Proceedings of the ACM Conference on Human Factors in Computing Systems--CHI '99 (pp.25-31). New York: ACM Press. Google ScholarGoogle Scholar
  122. MacKenzie, I. S., & Zhang, S. X. (2001). An empirical investigation of the novice experience with soft keyboards. Behaviour & Information Technology, 20 , 411-418.Google ScholarGoogle Scholar
  123. Majaranta, P., MacKenzie, I. S., Aula, A., & Raiha, K.-J. (2003). Auditory and visual feedback during eye typing. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems--CHI 2003 (pp.766-767). New York: ACM Press. Google ScholarGoogle Scholar
  124. Martin, D. W. (2004). Doing psychology experiments (6th ed.) . Belmont, CA: Wadsworth.Google ScholarGoogle Scholar
  125. Matias, E., MacKenzie, I. S., & Buxton, W. (1996). One-handed touch typing on a QWERTY keyboard. Human-Computer Interaction, 11 , 1-27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. McQueen, C., MacKenzie, I. S., & Zhang, S. X. (1995). An extended study of numeric entry on pen-based computers. Proceedings of Graphics Interface '95 (pp.215-222). Toronto: Canadian Information Processing Society.Google ScholarGoogle Scholar
  127. Montgomery, E. B. (1980). Data input system. U.S. Patent 4,211,497. U.S. Patent Office.Google ScholarGoogle Scholar
  128. Montgomery, E. B. (1982). Bringing manual input into the 20th century: New keyboard concepts. Computer, 15 , 11-18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. Oniszczak, A., & MacKenzie, I. S. (2004). A comparison of two input methods for keypads on mobile devices. Proceedings of the Third Nordic Conference on Human-Computer Interaction--NordiCHI 2004 (pp.101-104). New York: ACM Press. Google ScholarGoogle Scholar
  130. Pavlovych, A., & Stuerzlinger, W. (2003). Less-Tap: A fast and easy-to-learn text input technique for phones. Proceedings of Graphics Interface 2003 (pp.97-104). Toronto: Canadian Information Processing Society.Google ScholarGoogle Scholar
  131. Perlin, K. (1998). Quikwriting: Continuous stylus-based text entry. Proceedings of the ACM Symposium on User Interface Software and Technology--UIST '98 (pp.215-216). New York: ACM Press. Google ScholarGoogle Scholar
  132. Potosnak, K. M. (1988). Keys and keyboards. In M. Helander (Ed.), Handbook of human-computer interaction (pp.475-494). Amsterdam: Elsevier.Google ScholarGoogle Scholar
  133. Rau, H., & Skiena, S. (1994). Dialing for documents: An experiment in information theory. Proceedings of the ACM Symposium on User Interface Software and Technology--UIST '94 (pp.147-154). New York: ACM Press. Google ScholarGoogle Scholar
  134. Read, J. (2005). The usability of digital ink technologies for children and teenagers. People and Computers XIX: Proceedings of HCI 2005 (pp.19-25). Berlin: Springer-Verlag.Google ScholarGoogle Scholar
  135. Soukoreff, R. W., & MacKenzie, I. S. (2001). Measuring errors in text entry tasks: An application of the Levenshtein string distance statistic. Extended Abstracts of the ACM Conference on Human Factors in Computing--CHI 2001 (pp.319-320). New York: ACM Press. Google ScholarGoogle Scholar
  136. Soukoreff, R. W., & MacKenzie, I. S. (2003). Metrics for text entry research: An evaluation of MSD and KSPC, and a new unified error metric. Proceedings of the ACM Conference on Human Factors in Computing Systems--CHI 2003 (pp.113-120). New York: ACM Press. Google ScholarGoogle Scholar
  137. Soukoreff, R. W., & MacKenzie, I. S. (2004). Recent developments in text-entry error rate measurement. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems--CHI 2004 (pp.1425-1428). New York: ACM Press. Google ScholarGoogle Scholar
  138. Spakov, O., & Miniotas, D. (2004). On-line adjustment of dwell time for target selection by gaze. Proceedings of the Third Nordic Conference on Human-Computer Interaction--NordiCHI 2004 (pp.203-206). New York: ACM Press. Google ScholarGoogle Scholar
  139. Ward, D. J., Blackwell, A. F., & MacKay, D. J. C. (2000). Dasher: A data entry interface using continuous gestures and language models. Proceedings of the ACM Symposium on User Interface Software and Technology--UIST 2000 (pp.129-137). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. Wigdor, D., & Balakrishnan, R. (2003). TiltText: Using tilt for text input to mobile phones. Proceedings of the ACM Symposium on User Interface Software and Technology--UIST 2003 (pp.81-90). New York: ACM Press. Google ScholarGoogle Scholar
  141. Wigdor, D., & Balakrishnan, R. (2004). A comparison of consecutive and concurrent input text entry techniques for mobile phones. Proceedings of the ACM Conference on Human Factors in Computing Systems--CHI '04 (pp.81-88). New York: ACM Press. Google ScholarGoogle Scholar
  142. Wobbrock, J. O., Aung, H. H., Rothrock, B., & Myers, B. A. (2005). Maximizing the guessability of symbolic input. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems--CHI 2005 (pp.1869-1872). New York: ACM Press. Google ScholarGoogle Scholar
  143. Wobbrock, J. O., Myers, B. A., & Aung, H. H. (2004). Writing with a joystick: A comparison of date stamp, selection keyboard, and EdgeWrite. Proceedings of the 2004 Conference on Graphics Interface--GI 2004 (pp.1-8). Toronto: Canadian Information Processing Society. Google ScholarGoogle Scholar
  144. Wobbrock, J. O., Myers, B. A., & Rothrock, B. (2006). Few-key text entry revisited: Mnemonic gestures on four keys. ACM Conference on Human Factors in Computing Systems-- CHI 2006 (pp.489-492). New York: ACM Press. Google ScholarGoogle Scholar
  145. Yamada, H. (1980). A historical study of typewriters and typing methods: From the position of planning Japanese parallels. Journal of Information Processing, 2 , 175-202.Google ScholarGoogle Scholar
  146. Arnott, L. J., & Javed, Y. M. (1992). Probabilistic character disambiguation for reduced keyboards using small text samples. Augmentative and Alternative Communications, 8 , 215-223.Google ScholarGoogle ScholarCross RefCross Ref
  147. Bell, T., Cleary, J., & Witten, I. H. (1990). Text compression . Upper Saddle River, NJ: Prentice Hall. Google ScholarGoogle Scholar
  148. Darragh, J. J., Witten, I. H., & Long, J. (1992). The reactive keyboard . Cambridge, UK: Cambridge University Press. Google ScholarGoogle Scholar
  149. Desautels, E. J., & Soffer, S. B. (1974). Touch-tone input techniques: Data entry using a constrained keyboard. Proceedings of the 1974 Annual Conference (pp.245-253). New York: ACM Press. Google ScholarGoogle Scholar
  150. Dix, A., Finlay, J., Abowd, G., & Beale, R. (2004). Human-computer interaction (3rd ed.). London: Prentice Hall. Google ScholarGoogle Scholar
  151. Dunlop, M. (2004). Watch-top text-entry: Can phone-style predictive text entry work with only 5 buttons? Proceedings of Mobile HCI 2004 (pp.342-346). Heidelberg: Springer-Verlag.Google ScholarGoogle Scholar
  152. Gong, J., & Tarasewich, P. (2005). Alphabetically constrained keypad designs for text entry on mobile phones. Proceedings of the ACM Conference on Human Factors in Computing Systems--CHI 2005 (pp.211-220). New York: ACM Press. Google ScholarGoogle Scholar
  153. Green, N., Kruger, J., Faldu, C., & Amant, R. S. (2004). A reduced QWERTY keyboard for mobile text entry. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems--CHI 2004 (pp.1429-1432). New York: ACM Press. Google ScholarGoogle Scholar
  154. Harbusch, K., & Kuhn, M. (2003). Towards an adaptive communication aid with text input from ambiguous keyboards. Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics--EACL 2003 . Cambridge, MA: MIT Press. Google ScholarGoogle Scholar
  155. Higginbotham, D. J. (1992). Evaluation of keystroke savings across five assistive communication technologies. Augmentative and Alternative Communications, 8 , 258-272.Google ScholarGoogle ScholarCross RefCross Ref
  156. Hwang, S., & Lee, G. (2005). Qwerty-like 3×4 keypad layouts for mobile phone. Extended Abstracts of the ACM Conference on Human Factors in Computing Systems--CHI 2005 (pp.1479-1482). New York: ACM Press. Google ScholarGoogle Scholar
  157. Koester, H. H., & Levine, S. P. (1998). Model simulation of user performance with word prediction. Augmentative and Alternative Communications, 14 , 25-35.Google ScholarGoogle ScholarCross RefCross Ref
  158. Kurihara, T. (1970). Kana-Kanji Conversion (I). Technology reports of Kyushu University, 42(6) , 880-884, in Japanese. Hakata: Kyushu University.Google ScholarGoogle Scholar
  159. Kurihara, T. & Kurosaki, Y. (1967). On the Transformation Process of Phonetic Sentences into Ideographic Sentences. Technology reports of Kyushu University, 39(4) , 659-664, in Japanese. Hakata: Kyushu University.Google ScholarGoogle Scholar
  160. Lesher, G. W., Moulton, B. J., & Higginbotham, D. J. (1998). Optimal character arrangements for ambiguous keyboards. IEEE Transactions on Rehabilitation Engineering, 6 , 415-423.Google ScholarGoogle Scholar
  161. MacKenzie, I. S. (2002). KSPC (keystrokes per character) as a characteristic of text entry techniques. Proceedings of the Fourth International Symposium on Human-Computer Interaction with Mobile Devices (pp.195-210). Heidelberg: Springer-Verlag. Google ScholarGoogle Scholar
  162. Pavlovych, A., & Stuerzlinger, W. (2003). Less-Tap: A fast and easy-to-learn text input technique for phones. Proceedings of Graphics Interface 2003 (pp.97-104). Toronto: Canadian Information Processing Society.Google ScholarGoogle Scholar
  163. Rabiner, L. R., & Schafer, R. W. (1976). Digital techniques for computer voice response: Implementations and applications. Proceedings of the IEEE, 64 , 416-433.Google ScholarGoogle ScholarCross RefCross Ref
  164. Ryu, H., & Cruz, K. (2005). LetterEase: Improving text entry on a handheld device via letter reassignment. Proceedings of the 19th Conference of the Computer-Human Interaction Special Interaction Group (CHISIG) of Australia (pp.1-10). New York: ACM Press. Google ScholarGoogle Scholar
  165. Shannon, C. E. (1951). Prediction and entropy of printed English. Bell System Technical Journal, 30 , 51-64.Google ScholarGoogle ScholarCross RefCross Ref
  166. Silfverberg, M., MacKenzie, I. S., & Korhonen, P. (2000). Predicting text entry speed on mobile phones. Proceedings of the ACM Conference on Human Factors in Computing Systems-- CHI 2000 (pp.9-16). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. Smith, S. L., & Goodwin, N. C. (1971). Alphabetic data entry via the touch tone pad: A comment. Human Factors, 13 , 189-190.Google ScholarGoogle ScholarCross RefCross Ref
  168. Tanaka-Ishii, K., Inutsuka, Y., & Takeichi, M. (2002). Entering text with a four-button device. Proceedings of the 19th International Conference on Computational Linguistics, Vol. 1 (pp.1-7). Morristown, NJ: Association for Computational Linguistics. Google ScholarGoogle Scholar
  169. Wobbrock, J. O., & Myers, B. A. (2006). Few-key text entry revisited: Mnemonic gestures on four keys. Proceedings of the ACM Conference on Human Factors in Computing Systems-- CHI 2006 (pp.489-492). New York: ACM Press. Google ScholarGoogle Scholar
  170. Allen, G. (1993). Data input grid for computer. U.S. Patent 5,214,428. U.S. Patent Office.Google ScholarGoogle Scholar
  171. Bahlmann, C., Haasdonk, B., & Burkhardt, H. (2002). On-line handwriting recognition with support vector machines--a kernel approach. Proceedings of the 8th International Workshop on Frontiers in Handwriting Recognition, 6-8 August 2002, Niagara-on-the-Lake, ON, Canada (pp.49-54). Google ScholarGoogle ScholarCross RefCross Ref
  172. Daniels, P. T., & Bright, W. (Eds.) (1996). The world's writing systems . Oxford: Oxford University Press.Google ScholarGoogle Scholar
  173. Downton, A. C., & Impedova, S. (Eds.) (1997). Progress in handwriting recognition . Singapore: World Scientific.Google ScholarGoogle Scholar
  174. Glatte, H. (1959). Shorthand systems of the world . New York: Philosophical Library.Google ScholarGoogle Scholar
  175. Goldberg, D. (1997). Unistrokes for computerized interpretation of handwriting. U.S. Patent 5,596,656. U.S. Patent Office.Google ScholarGoogle Scholar
  176. Gove, P.B. (Ed.) (1986). Webster's third new international dictionary . Springfield, MA: Mirriam-Webster.Google ScholarGoogle Scholar
  177. Hu, J., Brown, M. K., & Turin, W. (1996). HMM based on-line handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 , 1039-1045. Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. Huber, W. B., Hanson, V. L., Cha, S.-H., & Tappert, C. C. (2005). Facilitating pen computing through common chatroom abbreviations. Proceedings of the Conference on Human Factors in Computing Systems--CHI '05 . New York: ACM Press.Google ScholarGoogle Scholar
  179. Lee, S.-W. (1999). Advances in handwriting recognition . Singapore: World Scientific.Google ScholarGoogle Scholar
  180. Liu, Z.-Q., Cai, J.-H., & Buse, R. (2003). Handwriting recognition: Soft computing and probabilistic approaches . New York: Springer-Verlag. Google ScholarGoogle Scholar
  181. Palm Computing (1996). PalmPilot: Graffiti reference card.Google ScholarGoogle Scholar
  182. Panati, C. (1984). The browser's book of beginnings . Boston: Houghton Mifflin.Google ScholarGoogle Scholar
  183. Papyrus Associates (1995). Recognition by Papyrus for Microsoft Windows: User reference guide . Redmond, WA: Microsoft Corp.Google ScholarGoogle Scholar
  184. Plamondon, R., & Srihari, S. N. (2000). On-line and off-line handwriting recognition: A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 , 63-84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  185. Schomaker, L. (1998). From handwriting analysis to pen-computer applications. Electronics and Communication Engineering Journal , 93-102.Google ScholarGoogle ScholarCross RefCross Ref
  186. Subrahmonia, J., & Zimmerman, T. (2000). Pen computing: challenges and applications. Proceedings of the 15th International Conference on Pattern Recognition, 2 , 60-66. Los Alamitos, CA: IEEE Computer Society.Google ScholarGoogle ScholarCross RefCross Ref
  187. Suen, C. Y., Berthod, M., & Mori, S. (1980). Automatic recognition of handprinted characters--The state of the art. Proceedings of the IEEE, 68 , 469-487.Google ScholarGoogle ScholarCross RefCross Ref
  188. Tappert, C. C., Suen, C. Y., & Wakahara, T. (1990). The state-of-the-art in on-line handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 , 787-808. Google ScholarGoogle ScholarDigital LibraryDigital Library
  189. Wobbrock, J. O. (2005). A robust design for accessible text entry. Proceedings of the 7th International ACM SIGACCESS Conference on Computers and Accessibility, 9-12 October 2005, Baltimore, MD (pp.31-32).Google ScholarGoogle Scholar
  190. Zhai, S., & Kristensson, P.-O. (2003). Shorthand writing on stylus keyboard. Proceedings of the Conference on Human Factors in Computing Systems--CHI . New York: ACM Press. Google ScholarGoogle Scholar
  191. Accot, J., & Zhai, S. (2001). Scale effects in steering law tasks. Proceedings of CHI 2001: ACM Conference on Human Factors in Computing Systems, CHI Letters 3 , 1-8. Google ScholarGoogle Scholar
  192. Buxton, W. (1986). Chunking and phrasing and the design of human-computer dialogues. Proceedings of the IFIP World Computer Congress (pp.475-480). Amsterdam: North Holland Publishers.Google ScholarGoogle Scholar
  193. Coulmas, F. (1989). The writing systems of the world . Oxford: Blackwell.Google ScholarGoogle Scholar
  194. David, P. A. (1985). Clio and the economics of QWERTY. American Economic Review, 75 , 332-337.Google ScholarGoogle Scholar
  195. David, P. A. (1998-2000). Path dependence, its critics, and the quest for 'historical economics ' (No. JEL-codes: A1 B0 C4 D9 N0 O3). Stanford, CA: Stanford University.Google ScholarGoogle Scholar
  196. Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification . New York: Wiley. Google ScholarGoogle Scholar
  197. Fuchs, A. H. (1962). The progression-regression hypothesis in perceptual-motor skill learning. Journal of Experimental Psychology, 29 , 39-53.Google ScholarGoogle Scholar
  198. Getschow, C. O., Rosen, M. J., & Goodenough-Trepagnier, C. (1986). A systematic approach to design a minimum distance alphabetical keyboard. Proceedings of the RESNA (Rehabilitation Engineering Society of North America) 9th Annual Conference, Minneapolis, MN (pp.396-398).Google ScholarGoogle Scholar
  199. Goldberg, D., & Richardson, C. (1993). Touching-typing with a stylus. Proceedings of INTERCHI, ACM Conference on Human Factors in Computing Systems (pp.80-87). New York: ACM Press. Google ScholarGoogle Scholar
  200. Karat, C.-M., Halverson, C., Horn, D., & Karat, J. (1999). Patterns of entry and correction in large vocabulary continuous speech recognition systems. Proceedings of CHI '99: ACM Conference on Human Factors in Computing Systems (pp.568-574). New York: ACM Press. Google ScholarGoogle Scholar
  201. Klimt, B., & Yang, Y. (2004). Introducing the Enron corpus. Proceedings of the Conference on Email and Anti-Spam (CEAS), Mountain View, CA .Google ScholarGoogle Scholar
  202. Kohl, R. M., & Shea, C. H. (1992). Pew (1966) revisited: Acquisition of hierarchical control as a function of observational practice. Journal of Motor Behavior, 24 , 247-260.Google ScholarGoogle ScholarCross RefCross Ref
  203. Kreitzman, A. (1998). The history of shorthand. Journal of Court Reporting , July.Google ScholarGoogle Scholar
  204. Kristensson, P.-O., & Zhai, S. (2004). SHARK2: A large vocabulary shorthand writing system for pen-based computers. Proceedings of the ACM Symposium on User Interface Software and Technology (pp.43-52). New York: ACM Press. Google ScholarGoogle Scholar
  205. Kurtenbach, G., & Buxton, W. (1994). User learning and performance with marking menus. Proceedings of CHI: ACM Conference on Human Factors in Computing Systems (pp.258-264). New York: ACM Press. Google ScholarGoogle Scholar
  206. Kurtenbach, G., Sellen, A., & Buxton, W. (1993). An empirical evaluation of some articulatory and cognitive aspects of "marking menus." Human-Computer Interaction, 8 , 1-23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  207. Landauer, T. K., & Bjork, R. A. (1978). Optimum rehearsal patterns and name learning. In M. M. Gruneberg, P. E. Morris, & R. N. Sykes (Eds.), Practical aspects of memory (pp. 625-632). London: Academic Press.Google ScholarGoogle Scholar
  208. Lewis, J. R. (1992). Typing-key layouts for single-finger or stylus input: initial user preference and performance (Technical Report No. 54729). Boca Raton, FL: International Business Machines Corp.Google ScholarGoogle Scholar
  209. Lewis, J. R., Kennedy, P. J., & LaLomia, M. J. (1992). Improved typing-key layouts for singlefinger or stylus input (Technical Report No. TR 54.692). Boca Raton, FL: International Business Machines Corp.Google ScholarGoogle Scholar
  210. Liebowitz, S., & Margolis, S. E. (1996). Typing errors. Reason Magazine , http://reason.com/9606/Fe.QWERTY.shtml.Google ScholarGoogle Scholar
  211. Liebowitz, S. J., & Margolis, S. E. (1990). The fable of the keys. Journal of Law and Economics, 33(1) , 1-25.Google ScholarGoogle ScholarCross RefCross Ref
  212. MacKenzie, I. S., & Zhang, S. X. (1999). The design and evaluation of a high-performance soft keyboard. Proceedings of CHI '99: ACM Conference on Human Factors in Computing Systems (pp.25-31). New York: ACM Press. Google ScholarGoogle Scholar
  213. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63 , 81-97.Google ScholarGoogle ScholarDigital LibraryDigital Library
  214. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing. I. Detection, search, and attention. Psychological Review, 84 , 1-66.Google ScholarGoogle ScholarCross RefCross Ref
  215. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27 , 379-423, 623-656.Google ScholarGoogle ScholarDigital LibraryDigital Library
  216. Smith, B. A., & Zhai, S. (2001). Optimised virtual keyboards with and without alphabetical ordering--A novice user study. Proceedings of INTERACT'2001--IFIP International Conference on Human-Computer Interaction, Tokyo, Japan (pp.92-99).Google ScholarGoogle Scholar
  217. Soukoreff, W., & MacKenzie, I. S. (1995). Theoretical upper and lower bounds on typing speeds using a stylus and keyboard. Behaviour & Information Technology, 14 , 379-379.Google ScholarGoogle Scholar
  218. Tappert, C. C., Suen, C. Y., & Wakahara, T. (1990). The state of the art in on-line handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 , 787-808. Google ScholarGoogle ScholarDigital LibraryDigital Library
  219. Theodoridis, K., & Koutroumbas, K. (1999). Pattern recognition . San Diego: Academic Press. Google ScholarGoogle Scholar
  220. Wang, J., Zhai, S., & Su, H. (2001). Chinese input with keyboard and eye tracking--An anatomical study. Proceedings of CHI 2001--ACM Conference on Human Factors in Computing Systems (pp.349-356). New York: ACM Press. Google ScholarGoogle Scholar
  221. Ward, D., Blackwell, A., & MacKay, D. (2000). Dasher--A data entry interface using continuous gesture and language models. Proceedings of the 13th ACM Symposium on User Interface Software and Technology (UIST) (pp.129-136). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  222. Williams, J. R. (1998). Guidelines for the use of multimedia in instruction. Proceedings of the Human Factors and Ergonomics Society 42nd Annual Meeting (pp.1447-1451). Santa Monica, CA: HFES.Google ScholarGoogle Scholar
  223. Wobbrock, J. O., Myers, B. A., & Kembel, J. A. (2003). EdgeWrite: a stylus-based text entry method designed for high accuracy and stability of motion. Proceedings of the ACM Symposium on User Interface Software and Technology (pp.61-70). New York: ACM Press. Google ScholarGoogle Scholar
  224. Yamada, H. (1980). A historical study of typewriters and typing methods: From the position of planning Japanese parallels. Journal of Information Processing, 2 , 175-202.Google ScholarGoogle Scholar
  225. Zhai, S., Hunter, M., & Smith, B. A. (2000). The Metropolis keyboard--An exploration of quantitative techniques for virtual keyboard design. Proceedings of the 13th Annual ACM Symposium on User Interface Software and Technology (UIST) (pp.119-218). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  226. Zhai, S., Hunter, M., & Smith, B. A. (2002a). Performance optimization of virtual keyboards. Human-Computer Interaction, 17 , 89-129.Google ScholarGoogle ScholarCross RefCross Ref
  227. Zhai, S., & Kristensson, P.-O. (2003). Shorthand writing on stylus keyboard. Proceedings of CHI 2003, ACM Conference on Human Factors in Computing Systems. CHI Letters, 5 , 97-104. Google ScholarGoogle Scholar
  228. Zhai, S., Kristensson, P.-O., & Smith, B. A. (2005). In search of effective text input interfaces for off the desktop computing. Interacting with Computers, 17(3) , 229-250.Google ScholarGoogle ScholarCross RefCross Ref
  229. Zhai, S., & Smith, B. A. (2001). Alphabetically biased virtual keyboards are easier to use--layout does matter. Proceedings of CHI 2001: ACM Conference on Human Factors in Computing Systems (pp.321-322). New York: ACM Press. Google ScholarGoogle Scholar
  230. Zhai, S., Sue, A., & Accot, J. (2002b). Movement model, hits distribution and learning in virtual keyboarding. Proceedings of CHI 2002: ACM Conference on Human Factors in Computing Systems. CHI Letters, 4 , 17-24. Google ScholarGoogle Scholar
  231. Akita, Y., Nishida, M., & Kawahara, T. (2003). Automatic transcription of discussions using unsupervised speaker indexing. Proc. IEEE Workshop on Spontaneous Speech Processing and Recognition, 13-16 April 2003, Tokyo (pp.79-82).Google ScholarGoogle Scholar
  232. Ando, A., Imai, T., Kobayashi, A., Isono, H., & Nakabayashi, K. (2000). Real-time transcription system for simultaneous subtitling of Japanese broadcast news programs. IEEE Transactions on Broadcasting, 46 , 189-196.Google ScholarGoogle Scholar
  233. Furui, S. (2001). Digital speech processing, synthesis, and recognition, (2nd ed.) . New York: Dekker.Google ScholarGoogle Scholar
  234. Furui, S. (2003). Toward spontaneous speech recognition and understanding. In W. Chou & B.-H. Juang (Eds.), Pattern recognition in speech and language processing (pp.191-227). New York: CRC Press.Google ScholarGoogle Scholar
  235. Furui, S., Kikuchi, T., Shinnaka, Y., & Hori, C. (2004). Speech-to-text and speech-to-speech summarization of spontaneous speech. IEEE Transactions on Speech and Audio, 12 , 401-408.Google ScholarGoogle ScholarCross RefCross Ref
  236. Gao, Y., Erdogan, H., Li, Y., Goel, V., & Picheny, M. (2001). Recent advances in speech recognition systems for IBM DARPA communicator. Proceedings of Eurospeech2001, 3-7 September 2001, Aalborg, Denmark (pp.503-506).Google ScholarGoogle Scholar
  237. Gibbon, D., Moore, R., & Winski, R. (Eds.) (1998). Spoken language system assessment. In Handbook of standards and resources for spoken language systems, Vol. III . Berlin: Mouton de Gruyter. Google ScholarGoogle Scholar
  238. Hirschberg, J., Bacchiani, M., Hindle, D., Isenhour, P., Rosenberg, A., Stark, L., Stead, L., Whittaker S., & Zamchick, G. (2001). SCANMail: Browsing and searching speech data by content. Proceedings of Eurospeech2001, 3-7 September 2001, Aalborg, Denmark (pp.2377-2380).Google ScholarGoogle Scholar
  239. Hunt, M. (1990). Figures of merit for assessing connected-word recognizers. Speech Communication, 9 , 329-336.Google ScholarGoogle ScholarCross RefCross Ref
  240. Janin, A., Ang, J., Bhagat, S., Dhillon, R., Edwards, J., Macias-Guarasa, J., Morgan, N., Peskin, B., Shriberg, E., Stolcke, A., Wooters, C., & Wrede, B. (2004). The ICSI Meeting project: Resources and research. Proceedings of the NIST ICASSP 2004 Meeting Recognition Workshop, 17 May 2004, Montreal. Google ScholarGoogle Scholar
  241. Juang, B.-H., & Furui, S. (2000). Automatic recognition and understanding of spoken language--A first step toward natural human-machine communication. Proceedings of the IEEE, 88 , 1142-1165.Google ScholarGoogle ScholarCross RefCross Ref
  242. Moeller, S. (2005). Quality of telephone-based spoken dialogue systems . New York: Springer.Google ScholarGoogle Scholar
  243. Ney, H., Martin, S., & Wessel, F. (1997). Statistical language modeling using leaving-oneout. In S. Young & G. Bloothooft (Eds.), Corpus-based methods in language and speech processing (pp.174-207). Dordrecht: Kluwer Academic.Google ScholarGoogle Scholar
  244. Nguyen, L., Matsoukas, S., Davenport, J., Liu, D., Billa, J., Kubala, F., & Makhoul, J. (1999). Further advances in transcription of broadcast news. Proceedings of Eurospeech99, 5-9 September 1999, Budapest (pp.667-670).Google ScholarGoogle Scholar
  245. Oard, D. W. (2004). Transforming access to the spoken word. Proceedings of the International Symposium on Large-Scale Knowledge Resources, 8-9 March 2004, Tokyo (pp.57-59).Google ScholarGoogle Scholar
  246. Pallett, D., Fisher, W., Fiscus, J., & Garofolo, J. (1990). DARPA ATIS test results, June 1990. Proceedings of the Speech and Natural Language Workshop , 24-27 June 1990 (pp.114-121). Google ScholarGoogle ScholarDigital LibraryDigital Library
  247. Rabiner, L. R., & Juang, B.-H. (1993). Fundamentals of speech recognition . Upper Saddle River, NJ: Prentice Hall. Google ScholarGoogle Scholar
  248. Waibel, A., & Rogina, I. (2003). Advances on ISL's lecture and meeting trackers. Proceedings of the IEEE Workshop on Spontaneous Speech Processing and Recognition, 13-16 April 2003, Tokyo (pp.127-130).Google ScholarGoogle Scholar
  249. Young, S. (1996). A review of large-vocabulary continuous-speech recognition. IEEE Signal Processing Magazine, 13 , 45-57.Google ScholarGoogle ScholarCross RefCross Ref
  250. Aoki, H., Hansen, J. P., & Itoh, K. (2006). Towards remote evaluation of gaze typing systems. Proceedings of COGAIN 2006 (pp.96-103). Available at http://www.cogain.org/ results/reports/COGAIN-D3.1.pdf.Google ScholarGoogle Scholar
  251. Bates, R., & Istance, H. O. (2003). Why are eye mice unpopular? A detailed comparison of head eye controlled assistive technology pointing devices. Universal Access in the Information Society, 2 , 280-290.Google ScholarGoogle ScholarDigital LibraryDigital Library
  252. Chapman, J. E. (1991). The use of eye-operated computer system in locked-in syndrome. Proceedings of the Sixth Annual International Conference on Technology and Persons with Disabilities--CSUN '91, 20-23 March 1991, Los Angeles, CA .Google ScholarGoogle Scholar
  253. Charlier, J., Buquet, C., Dubus, F., Hugeux, J. P., & Degroc, B. (1997). VISIOBOARD: a new gaze command system for handicapped subjects. Medical and Biological Engineering and Computing, 35 , 461-462.Google ScholarGoogle Scholar
  254. Cleveland, N. (1994). Eyegaze human-computer interface for people with disabilities. Proceedings of 1st Automation Technology and Human Performance Conference, Washington, DC . Available at http://www.eyegaze.com/doc/cathuniv.htm.Google ScholarGoogle Scholar
  255. Donegan, M., Oosthuizen, L., Bates, R., Daunys, G., Hansen, J. P., Joos, M., Majaranta, P., & Signorile, I. (2005). D3.1 user requirements report with observations of difficulties users are experiencing . Communication by Gaze Interaction (COGAIN), IST-2003-511598: Deliverable 3.1. Available at http://www.cogain.org/results/ reports/COGAIN-D3.1.pdf.Google ScholarGoogle Scholar
  256. Duchowski, A. T. (2003). Eye tracking methodology: Theory and practice . London: Springer-Verlag. Google ScholarGoogle Scholar
  257. Fejtová, M., Fejt, J., & Lhotská, L. (2004). Controlling a PC by eye movements: The MEMREC project. In K. Miesenberger, J. Klaus, W. Zagler, & D. Burger (Eds.), Proceedings of Computers Helping People with Special Needs: 9th international conference (ICCHP 2004). Lecture Notes in Computer Science, 3118 , 770-773.Google ScholarGoogle ScholarCross RefCross Ref
  258. Frey, L. A., White, K. P., Jr., & Hutchinson, T. E. (1990). Eye-gaze word processing. IEEE Transactions on Systems, Man, and Cybernetics, 20 , 944-950.Google ScholarGoogle ScholarCross RefCross Ref
  259. Gips, J., DiMattia, P., Curran, F. X., & Olivieri, P. (1996). Using EagleEyes--An electrodes based device for controlling the computer with your eyes--to help people with special needs. In J. Klaus, E. Auff, W. Kremser, & W. Zagler (Eds.), Interdisciplinary aspects on computers helping people with special needs (pp.630-635). Vienna: Oldenburg. Google ScholarGoogle Scholar
  260. Gips, J., Olivieri, C. P., & Tecce, J. J. (1993). Direct control of the computer through electrodes placed around the eyes. In M. J. Smith & G. Salvendy (Eds.), Human-computer interaction: Applications and case studies (pp.630-635). Amsterdam: Elsevier.Google ScholarGoogle Scholar
  261. Grauman, K., Betke, M., Lombardi, J., Gips, J., & Bradski, G. R. (2003). Communication via eye blinks and eyebrow raises: Video-based human-computer interfaces. Universal Access in the Information Society, 2 , 359-373.Google ScholarGoogle ScholarDigital LibraryDigital Library
  262. Hansen, D. W., & Hansen, J. P. (2006). Eye typing with common cameras. Proceedings of the Symposium on Eye Tracking Research & Applications--ETRA 2006 (p.55). New York: ACM Press. Google ScholarGoogle Scholar
  263. Hansen, D. W., Hansen, J. P., Nielsen, M., Johansen, A. S., & Stegmann, M. B. (2002). Eye typing using Markov and active appearance models. In Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision--WACV '02 (pp.132-136). Los Alamitos, CA: IEEE Computer Society. Google ScholarGoogle Scholar
  264. Hansen, J. P., Hansen, D. W., & Johansen, A. S. (2001). Bringing gaze-based interaction back to basics. In C. Stephanidis (Ed.), Universal access in HCI: Towards an information society for all (pp.325-328). Mahwah, NJ: Lawrence Erlbaum.Google ScholarGoogle Scholar
  265. Hansen, J. P., Johansen, A. S., Hansen, D. W., Itoh, K., & Mashino, S. (2003). Command without a click: Dwell time typing by mouse and gaze selections. In M. Rauterberg, M. Menozzi, & J. Wesson (Eds.), Proceedings of Human-Computer Interaction--INTERACT '03 (pp.121-128). Amsterdam: IOS Press.Google ScholarGoogle Scholar
  266. Hutchinson, T. E., White, K. P., Martin, W. N., Reichert, K. C., & Frey, L. A. (1989). Human-computer interaction using eye-gaze input. IEEE Transactions on Systems, Man, and Cybernetics, 19 , 1527-1534.Google ScholarGoogle Scholar
  267. Hyrskykari, A. (2006). Eyes in attentive interfaces: Experiences from creating iDict, a gaze-aware reading aid . In Dissertations in interactive technology , No. 4, Department of Computer Sciences, University of Tampere. Published electronically in Acta Electronica Universitatis Tamperensis, 531 . Available at http://acta.uta.fi/pdf/951-44-6643-8.pdf.Google ScholarGoogle Scholar
  268. Hyrskykari, A., Majaranta, P., & Räihä, K.-J. (2005). From gaze control to attentive interfaces. Proceedings of the 11th International Conference on Human-Computer Interaction-- HCII 2005, Vol. 7, Universal access in HCI: Exploring new interaction environments . CD-ROM. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.Google ScholarGoogle Scholar
  269. Itoh, K., Aoki, H., & Hansen, J. P. (2006). A comparative usability study of two Japanese gaze typing systems. Proceedings of the Symposium on Eye Tracking Research & Applications-- ETRA 2006 (pp.59-66). New York: ACM Press. Google ScholarGoogle Scholar
  270. Jacob, R. J. K. (1991). The use of eye movements in human-computer interaction techniques: What you look at is what you get. ACM Transactions on Information Systems, 9 , 152-169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  271. Jacob, R. J. K. (1993). Eye movement-based human-computer interaction techniques: Toward non-command interfaces. In H. R. Hartson & D. Hix (Eds.), Advances in human-computer interaction, Vol. 4 (pp.151-190). Norwood, NJ: Ablex Publishing.Google ScholarGoogle Scholar
  272. Jacob, R. J. K. (1995). Eye tracking in advanced interface design. In W. Barfield & T. A. Furness (Eds.), Virtual environments and advanced interface design (pp.258-288). New York: Oxford University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  273. Jacob, R. J. K., & Karn, K. S. (2003). Eye tracking in human-computer interaction and usability research: Ready to deliver the promises (section commentary). In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eye: Cognitive and applied aspects of eye movement research (pp.573-605). Amsterdam: Elsevier.Google ScholarGoogle Scholar
  274. Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive Psychology, 8 , 441-480.Google ScholarGoogle Scholar
  275. Kahn, D. A., Heynen, J., & Snuggs, G. L. (1999). Eye-controlled computing: The VisionKey experience. Proceedings of the Fourteenth International Conference on Technology and Persons with Disabilities--CSUN '99, 15-20 March 1999, Los Angeles, CA .Google ScholarGoogle Scholar
  276. Land, M. F., & Furneaux, S. (1997). The knowledge base of the oculomotor system. Philosophical Transactions: Biological Sciences, 352 , 1231-1239.Google ScholarGoogle ScholarCross RefCross Ref
  277. Majaranta, P., & Räihä, K.-J. (2002). Twenty years of eye typing: Systems and design issues. Proceedings of the Symposium on Eye Tracking Research & Applications--ETRA 2002 (pp.15-22). New York: ACM Press. Google ScholarGoogle Scholar
  278. Majaranta, P., MacKenzie, I. S., Aula, A., & Räihä, K.-J. (2006). Effects of feedback and dwell time on eye typing speed and accuracy. Universal Access in the Information Society, 5 , 199-208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  279. Rasmusson, D., Chappell, R., & Trego, M. (1999). Quick Glance: Eye-tracking access to the Windows95 operating environment. Proceedings of the Fourteenth International Conference on Technology and Persons with Disabilities--CSUN '99 . Los Angeles.Google ScholarGoogle Scholar
  280. Stampe, D. M., & Reingold, E. M. (1995). Selection by looking: A novel computer interface and its application to psychological research. In J. M. Findlay, R. Walker, & R. W. Kentridge (Eds.), Eye movement research: Mechanisms, processes and applications (pp.467-478). Amsterdam: Elsevier.Google ScholarGoogle Scholar
  281. Surakka, V., Illi, M., & Isokoski, P. (2003). Voluntary eye movements in human-computer interaction. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eye: Cognitive and applied aspects of eye movement research (pp.473-491). Amsterdam: Elsevier.Google ScholarGoogle Scholar
  282. Ten Kate, J. H., Frietman, E. E. E., Willems, W., Ter Haar Romeny, B. M., & Tenkink, E. (1979). Eye-switch controlled communication aids. Proceedings of the 12th International Conference on Medical & Biological Engineering, 19-24 August 1979, Jerusalem, Israel .Google ScholarGoogle Scholar
  283. Ward, D. J., & MacKay, D. J. C. (2002). Fast hands-free writing by gaze direction. Nature 418 , 838.Google ScholarGoogle ScholarDigital LibraryDigital Library
  284. Bloomfield, L. (1933). Language . New York: Rinehart & Winston.Google ScholarGoogle Scholar
  285. Bright, W. (1999). A matter of typology: Alphasyllabaries and abugidas. Written Language and Literacy, 2 , 45-55.Google ScholarGoogle ScholarCross RefCross Ref
  286. Coulmas, F. (1996). The Blackwell encyclopedia of writing systems . Oxford: Blackwell.Google ScholarGoogle Scholar
  287. Daniels, P. (1992). The syllabic origin of writing and the segmental origin of the alphabet. In P. Downing, S. Lima, & M. Noonan (Eds.), The linguistics of literacy (pp.83-110). Amsterdam: John Benjamins.Google ScholarGoogle Scholar
  288. Daniels, P. (1996). The study of writing systems. In P. Daniels & W. Bright (Eds.), The world's writing systems (pp.3-17). New York: Oxford University Press.Google ScholarGoogle Scholar
  289. Gelb, I. (1952). A study of writing . Chicago: University of Chicago Press.Google ScholarGoogle Scholar
  290. Grivelet, S. (2001). Introduction to digraphia: Writing systems and society. International Journal of the Sociology of Language, 150 , 1-10.Google ScholarGoogle ScholarCross RefCross Ref
  291. Harris, R. (1995). Signs of writing . London: Routledge.Google ScholarGoogle Scholar
  292. Harris, R. (2000). Rethinking writing . Bloomington: Indiana University Press.Google ScholarGoogle Scholar
  293. Magner, M. (2001). Digraphia in the territories of the Croats and Serbs. International Journal of the Sociology of Language, 150 , 11-26.Google ScholarGoogle Scholar
  294. Saussure, F. (1993). 3eme Cours de Linguistique Générale (2de partie: la langue) de Ferdinand Saussure, notes taken by E. Constantin. Elmsford, NY: Pergamon.Google ScholarGoogle Scholar
  295. Taylor, I. (1883). The alphabet: An account of the origin and development of letters . London: Kegan Paul, Trench.Google ScholarGoogle Scholar
  296. Vachek, J. (1989). Written language revisited . Amsterdam: John Benjamins.Google ScholarGoogle Scholar
  297. Vaid, J., & Gupta, A. (2002). Exploring word recognition in a semi-alphabetic script: The case of Devanagari. Brain and Language, 81 , 679-690.Google ScholarGoogle ScholarCross RefCross Ref
  298. Vaid, J., & Padakannaya, P. (2004). Introduction to the special issue of Reading and Writing: An Interdisciplinary Journal. Reading and Writing: An Interdisciplinary Journal, 17 , 1-6.Google ScholarGoogle ScholarCross RefCross Ref
  299. World Internet Statistics (2006). http://www.internetworldstats.com/stats.htmGoogle ScholarGoogle Scholar
  300. Bilac, S., Baldwin, T., & Tanaka, H. (2002). Bringing the dictionary to the user: the FOKS System. Proceedings of the 19th International Conference on Computational Linguistics (pp.84-91): http://www.foks.info//index.html. Morristown, NJ: Association for Computational Linguistics. Google ScholarGoogle Scholar
  301. Breen, J. (2005). Jim Breen's WWWDic Site: http://www.csse.monash.edu.au/jwb/cgibin/ wwwjdic.cgiGoogle ScholarGoogle Scholar
  302. Chen, Z., & Lee, K. (2000). A new statistical approach to Chinese pinyin input. Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics (pp. 241-247). Morristown, NJ: Association for Computational Linguistics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  303. Chen, Z., Li, M., Zhang, F., & Yang, R. (2000). Chinese pinyin input on mobile phone. In The 2nd International Symosium on Chinese Spoken Language Processing, October 13-15, 2000, Beijing, China.Google ScholarGoogle Scholar
  304. Dylan, W. (1997). Four corner system. Accessed in 2006 at http://www.sungwh.freeserve.co.uk/sapienti/fourcinp.htm. Created on the 23rd November 1997 and last updated on 2nd August 2001.Google ScholarGoogle Scholar
  305. Gao, J., & Lee, K.-F. (2000). Distribution-based pruning of backoff language models. Morristown, NJ: Association for Computational Linguistics. Google ScholarGoogle Scholar
  306. Halpern, J. (1999). Kanji learner's dictionary . Tokyo: Kodansha International.Google ScholarGoogle Scholar
  307. Kurihara, A., & Kurosaki, H. (1967). About a transformation method of kana into kanji text. Technical Report of the University of Kyusyu, 39 , 659-664. [In Japanese].Google ScholarGoogle Scholar
  308. Lee, I., & Ramsey, S. (2001). The Korean language . Albany: State University of New York Press.Google ScholarGoogle Scholar
  309. Lee, U. (2002). A research and analysis on the Standard Korean dictionary . Seoul: The National Academy of the Korean Language.Google ScholarGoogle Scholar
  310. Mori, K., & Yagihashi, T. (1989). The birth of Japanese word processors . Tokyo: Maruzen publishing. [In Japanese].Google ScholarGoogle Scholar
  311. Nagata, M. (1998). A study on Japanese text processing by statistical models . Kyoto: University of Kyoto. [Ph.D. thesis; in Japanese].Google ScholarGoogle Scholar
  312. Sampson, G. (1985). Writing systems: A linguistic introduction . Stanford, CA: Stanford University Press.Google ScholarGoogle Scholar
  313. Tanaka-Ishii, K., & Godon, J. (2006). Kansuke: A kanji look-up system based on a few stroke prototypes. International Conference on Computer Processing of Oriental Languages: http://www.ish.ci.i.u-tokyo.ac.jp/kansuke.html (pp. 234-244). Berlin/Heidelberg: Springer. Google ScholarGoogle Scholar
  314. Tanaka-Ishii, K., Inutsuka, Y., & Takeichi, M. (2000). Japanese input system with digits-- Can Japanese be input only with consonants? Human Language Technology Conference 2001 (pp. 211-218). Morristown, NJ: Association for Computational Linguistics. Google ScholarGoogle Scholar
  315. Tanaka-Ishii, K., Inutsuka, Y., & Takeichi, M. (2002). Entering text with a four-button device. International Conference on Computational Linguistics (pp.988-994). Morristown, NJ: Association for Computational Linguistics. Google ScholarGoogle Scholar
  316. WanNenMa (2005). Wannenma entry system: http://www.hongen.com/pc/newer/ime/wnm/wnm01.htmGoogle ScholarGoogle Scholar
  317. Wicentowski, J. (1996). Wubizixing. Created in 1996, accessed in 2006 at http://www.yale.edu/chinesemac/wubi/xing.htmlGoogle ScholarGoogle Scholar
  318. Wicentowski, J. (2001). Wubihua. Created in 1994, accessed in 2006 at http://www.yale.edu/chinesemac/wubi/hua.htmlGoogle ScholarGoogle Scholar
  319. Yamada, H. (1980). A historical study of typewriters and typing methods: From the position of planning Japanese parallels. Journal of Information Processing, 2 .Google ScholarGoogle Scholar
  320. Yamada, H. (1983). Certain problems associated with the design of input keyboards for Japanese writing. In W. E. Cooper (Ed.), Cognitive aspects of skilled typewriting (pp.305-407).New York: Springer-Verlag.Google ScholarGoogle Scholar
  321. Acharya (2001). Fonts for Indian languages . Madras: Systems Development Laboratory, IIT: http://acharya.iitm.ac.in/ind_fonts.htmlGoogle ScholarGoogle Scholar
  322. Acharya (2003). Limitations of Unicode and ISCII. Madras: Systems Development Laboratory, IIT: http://acharya.iitm.ac.in/multi_sys/uni_iscii.htmlGoogle ScholarGoogle Scholar
  323. Amonwiwattanakul, V. (2001). Thailand Petty Patent No. 375. Department of Intellectual Property, Ministry of Commerce of Thailand. [In Thai].Google ScholarGoogle Scholar
  324. Baraha (2006). Indic Unicode issues in Windows XP: http://www.baraha.com/ documents.htmlGoogle ScholarGoogle Scholar
  325. Daniels, P. T. (1996). The study of writing systems. In P. T. Daniels & W. Bright (Eds.), The world's writing systems (pp.3-17). New York: Oxford University Press.Google ScholarGoogle Scholar
  326. Golshani, E. (2004). Brahmi descended scripts: http://www.geocities.com/Athens/Academy/ 9594/brahmi.htmlGoogle ScholarGoogle Scholar
  327. Hall, P. (1998). Vernacular software in South Asia: What happens now and what is needed. International Working Conference of IFIP WG9.4 for Implementation and Evaluation of Information Systems in Developing Countries, March 1998, Bangkok .Google ScholarGoogle Scholar
  328. Holle, K. F. (1999). Table of old and new Indic alphabets: Contribution to the paleography of the Dutch Indies. Written Language and Literacy, 2 , 167-246.Google ScholarGoogle ScholarCross RefCross Ref
  329. Hosking, R. F., & Meredith-Owens, G. M. (1966). A handbook of Asian scripts . London: British Museum.Google ScholarGoogle Scholar
  330. Htut, Z. (2004). Input methods and basic encoding in Myanmar language: http://www.myanmars.net/unicode/doc/20040507_zhtut.pptGoogle ScholarGoogle Scholar
  331. Internet World Statistics (2006). http://www.internetworldstats.com/asia.htm#inGoogle ScholarGoogle Scholar
  332. Joshi, A., Ganu, A., Chand, A., Parmar, V., & Mathur, G. (2004). Keylekh: A keyboard for text entry in Indian scripts. Proceedings of the ACM Conference on Human Factors in Computing Systems - CHI 2004, Vienna . Retrieved 22 May 2006. Google ScholarGoogle Scholar
  333. Kaplan, M. S., & Wissink, C. (2003). Unicode and keyboards on Windows. 23rd Internationalization and Unicode Conference, March 2003, Prague .Google ScholarGoogle Scholar
  334. Keniston, K. (2001). Language, power, and software. In C. Ess (Ed.), Culture, technology, communication: Towards an intercultural global village (pp.283-306). Albany, NY: State University of New York Press.Google ScholarGoogle Scholar
  335. Kuipers, J. C., & McDermott, R. (1996). Insular Southeast Asian scripts. In P. T. Daniels & W. Bright (Eds.), The world's writing systems (pp.474-484). New York: Oxford University Press.Google ScholarGoogle Scholar
  336. Open Forum of Cambodia (2004). How to type Khmer Unicode [electronic version]: http://www.khmeros.info/drupal/?q = en/download/docsGoogle ScholarGoogle Scholar
  337. Phaholpinyo, P. (2006). A survey of mobile phone type in Thailand and Thai input method on mobile phone. NECTEC Technical Journal, 5(17) . [In Thai].Google ScholarGoogle Scholar
  338. Potipiti, T., Sornlertlamvanich, V., & Thanadkran, K. (2001). Towards an intelligent multilingual keyboard system. Paper presented at the Human Language Technology Conference (HLT 2001), 18-21 March 2001, San Diego . Google ScholarGoogle Scholar
  339. Rojarayanon, P. (2003). GOTTHAI (unpublished work).Google ScholarGoogle Scholar
  340. Salomon, R. G. (1996). Brahmi and Kharoshthi. In P. T. Daniels & W. Bright (Eds.), The world's writing systems (pp.373-383). New York: Oxford University Press.Google ScholarGoogle Scholar
  341. Sornlertlamvanich, V. (2001a). Thailand Patent Accession No. 067839. Department of Intellectual Property, Ministry of Commerce of Thailand. [In Thai].Google ScholarGoogle Scholar
  342. Sornlertlamvanich, V. (2001b). Sansarn and Smart-Q: http://www.tcllab.org/ virach/publication.htmlGoogle ScholarGoogle Scholar
  343. Sornlertlamvanich, V. (2003). Development of Thai encoding and the implementations. Paper presented at the International Symposium on Indic Scripts: Past and Future, 17-19 December 2003, Tokyo .Google ScholarGoogle Scholar
  344. Sornlertlamvanich, V., & Charoenporn, T. (2001). Punctuation mark: The forgotten items in Thai writing system. In Thai font (pp.102-114). Bangkok: National Electronics and Computer Technology Center. [In Thai].Google ScholarGoogle Scholar
  345. Technology Development for Indian Languages (2002). Revision of Unicode Standard- 3.0 for Devanagari Script. Journal of Language Technology : http://www.tdil.mit.gov.in/ newsIndexJan02.htmlGoogle ScholarGoogle Scholar
  346. Telecom Regulatory Authority of India (2006). Growth in telephony continues in April 2006 -- 4.6 million subscribers added. Press Release No. 41/2006. New Delhi: Telecom Regulatory Authority of India.Google ScholarGoogle Scholar
  347. Thai Industrial Standards Institute (1990). TIS 620-2533: Standard for Thai character codes for computers. Bangkok: TISI. [In Thai].Google ScholarGoogle Scholar
  348. Thai Industrial Standards Institute (1995). TIS 820-2538: Layout of Thai character keys on computer keyboards. Bangkok: TISI. [In Thai].Google ScholarGoogle Scholar
  349. Unicode (2003). The Unicode standard 4.0 . Reading, MA: Addison-Wesley.Google ScholarGoogle Scholar
  350. Basis Technology (2006). Arabic editor: http://www.basistech.com/arabic-editor/Google ScholarGoogle Scholar
  351. Bauer, T. (1996). Arabic writing. In P. Daniels & W. Bright (Eds.), The World's writing systems (pp.559-568). London: Oxford University Press.Google ScholarGoogle Scholar
  352. Daniels, P. T. (1997). Scripts of Semitic languages. In R. Hetzron (Ed.), The Semitic languages (pp.16-45). London: Routledge.Google ScholarGoogle Scholar
  353. Daniels, P. T., & Bright, W. (1996). The World's writing systems . London: Oxford University Press.Google ScholarGoogle Scholar
  354. Davis, M. (2005). Unicode standard annex 9: The bidirectional algorithm: http://www.unicode.org/reports/tr9/Google ScholarGoogle Scholar
  355. Goerwitz, R. L. (1996). The Jewish scripts. In P. Daniels & W. Bright (Ed.), The World's writing systems (pp.487-498). London: Oxford University Press.Google ScholarGoogle Scholar
  356. Hary, B., & Aronson, H. (1996). Adaptations of Hebrew script. In P. Daniels & W. Bright (Eds.), The World's writing systems (pp.727-742). London: Oxford University Press.Google ScholarGoogle Scholar
  357. Hetzron, R. (1998). Hebrew. In B. Comrie (Ed.), The World's major languages (pp.686-704). London: Oxford University Press.Google ScholarGoogle Scholar
  358. International Phonetic Association (2006). Reproduction of the international phonetic alphabet (revised to 2005): http://www2.arts.gla.ac.uk/IPA/ipachart.htmlGoogle ScholarGoogle Scholar
  359. Kaye, A. S. (1987). Arabic. In B. Comrie (Ed.), The World's major languages (pp.664-685). London: Oxford University Press.Google ScholarGoogle Scholar
  360. Kaye, A. (1996). Adaptations of Arabic script. In P. Daniels & W. Bright (Eds.), The World's writing systems (pp.743-762). London: Oxford University Press.Google ScholarGoogle Scholar
  361. Mallarmé, S. (1980). Oeuvres complétes (p.901). Paris: Gallimard.Google ScholarGoogle Scholar
  362. Nelken, R., & Shieber, S. (2005). Arabic diacritization using weighted finite-state transducers. ACL Workshop on Computational Approaches to Semitic Languages, University of Michigan, Ann Arbor, USA (pp.79-86). Google ScholarGoogle Scholar
  363. Palfreyman, D., & Khalil, M. (2003). A funky language for teenzz to use: Representing Gulf Arabic in instant messaging. Journal of Computer-Mediated Communication, 9 . Online at http://jcmc.indiana.edu/Google ScholarGoogle Scholar
  364. Sasaki, T. (2005). Literacy in Israel. Kotoba to Shakai (Language and Society), 9 , 12-28. [In Japanese].Google ScholarGoogle Scholar
  365. Sasaki, T. (2006). Text editing in Hebrew and Jewish languages: http://www.tscyberia.net/editing h-j.htmlGoogle ScholarGoogle Scholar
  366. Savage-Rumbaugh, S., & Lewin, R. (1996). The ape at the brink of the human mind . New York: Wiley.Google ScholarGoogle Scholar
  367. Shieber, S., & Baker, E. (2003). Abbreviated text input. International Conference on Intelligent User Interfaces (pp.293-296). New York: ACM Press. Google ScholarGoogle Scholar
  368. Unicode Consortium (2003). The Unicode Standard, version 4.0, Chap. 8, Middle Eastern scripts: http://www.unicode.org/versions/Unicode4.0.0/. Reading, MA: Addison-Wesley.Google ScholarGoogle Scholar
  369. Beck, N., & Fetherston, T. (2003). The effects of incorporating a word processor into a year three writing program. Information Technology in Childhood Education Annual, 1 , 139-161.Google ScholarGoogle Scholar
  370. Brouwer-Janse, M. D., Suri, J. F., Yawitz, M., de Vries, G., Fozard, J. L., & Coleman, R. (1997). User interfaces for young and old. Interactions, 2 , 34-46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  371. Clarke, A. (2005). Guidelines for the design and deployment of ICT products and services used by children (ETSI EG 202 423) . Sophia Antipolis, France: European Telecommunications Standards Institute.Google ScholarGoogle Scholar
  372. Cunningham, A. E., & Stanovich, K. E. (1990). Early spelling acquisition: Writing beats the computer. Journal of Educational Psychology, 82 , 159-162.Google ScholarGoogle ScholarCross RefCross Ref
  373. Danesh, A., Inkpen, K., Lau, F., Shu, K., & Booth, K. (2001). Geney: Designing a collaborative activity for the Palm handheld computer, Proceedings of the ACM Conference on Human Factors in Computer Systems--CHI 2001 (pp.388-395). New York: ACM Press. Google ScholarGoogle Scholar
  374. Druin, A. (Ed.) (1999). The design of children's technology . San Francisco: Morgan Kaufmann. Google ScholarGoogle Scholar
  375. Druin, A., & Inkpen, K. (2001). When are personal technologies for children? Personal and Ubiquitous Computing, 5 , 191-194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  376. ETSI (1997). Characteristics of telephone keypads and keyboards: Requirements of elderly and disabled people (ETR 346). Sophia Antipolis, France: European Telecommunications Standards Institute.Google ScholarGoogle Scholar
  377. Gould, J. D., Conti, J., & Hovanyecz, T. (1983). Composing letters with a simulated listening typewriter. Communications of the ACM, 26 , 295-308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  378. Gregor, P., Newell, A. F., & Zajicek, M. (2002). Designing for dynamic diversity--interfaces for older people. Proceedings of ASSETS 2002 (pp.151-156). New York: ACM Press. Google ScholarGoogle Scholar
  379. Grinter, R. E., & Eldridge, M. A. (2001). "y do tngrs luv 2 txt msg?" in W. Prinz, M. Jarke, Y. Rogers, K. Schmidt and V. Wulf (eds.): Proceedings of the Seventh European Conference on Computer Supported Cooperative Work (ECSCW '01), Bonn, Germany (pp.219-238). Dordrecht, Netherlands: Kluwer Academic Publishers. Google ScholarGoogle Scholar
  380. Grinter, R. E., & Eldridge, M. A. (2003). Wan2tlk?: Everyday text messaging. Proceedings of the ACM Conference on Human Factors in Computer Systems--CHI 2003 (pp.441-448). New York: ACM Press. Google ScholarGoogle Scholar
  381. Hayflick, L. (1977). The cellular basis for biological aging. In C. E. Finch & L. Hayflick (Eds.), Handbook of the biology of aging . New York: Academic Press.Google ScholarGoogle Scholar
  382. Hourcade, J. P. (2003). User interface technologies and guidelines to support children's creativity, collaboration and learning . College Park: University of Maryland. [Ph.D. thesis]. Google ScholarGoogle Scholar
  383. Hourcade, J. P. (2006). Design for children. In G. Salvendy (Ed.), Handbook of human factors and ergonomics (pp.1446-1459). Hoboken, NJ: Wiley.Google ScholarGoogle Scholar
  384. Jaffe, G. J., Alvarado, J. A., & Juster, R. P. (1986). Age-related changes of the normal visual field. Archives of Ophthalmology, 194 , 1021-1025.Google ScholarGoogle ScholarCross RefCross Ref
  385. Kail, R. V. (2002). Children . Upper Saddle River, NJ: Prentice Hall.Google ScholarGoogle Scholar
  386. Kerr, R. (1975). Movement control and maturation in elementary-grade children. Perceptual and Motor Skills, 41 , 151-154.Google ScholarGoogle ScholarCross RefCross Ref
  387. Kimmel, D. C. (1990). Adulthood and aging . New York: Wiley.Google ScholarGoogle Scholar
  388. Kurniawan, S., Mahmud, M., & Nugroho, Y. (2006). A study of the use of mobile phones by older persons. Proceedings of the ACM Conference on Human Factors in Computer Systems-- CHI 2006 (pp.989-994). New York: ACM Press. Google ScholarGoogle Scholar
  389. Miles, W. P. (1931). Measures of certain human abilities throughout the life span. Proceedings of the National Academy of Sciences USA, 17 , 627-633.Google ScholarGoogle ScholarCross RefCross Ref
  390. Murata, A., Nakamura, H., & Okada, Y. (2002). Comparison of efficiency in key entry among young, middle and elderly age groups-Effects of aging and character size on work efficiency in an entry task. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics 2002 (pp.96-101). New York: IEEE Press.Google ScholarGoogle Scholar
  391. Newell, A. F. (1993). Interfaces for the ordinary and beyond. IEEE Software, 10 , 76-78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  392. Nichols, T. A., Rogers, W. A., & Fisk, A. D. (2006). Design for aging. In G. Salvendy (Ed.), Handbook of human factors and ergonomics (pp.1418-1446). Hoboken, NJ: Wiley.Google ScholarGoogle Scholar
  393. O'Hare, E. A., & McTear, M. F. (1999). Speech recognition in the secondary school classroom: An exploratory study. Computers and Education, 33 , 27-45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  394. Ogozalek, V. Z., & van Praag, J. (1986). Comparison of elderly and younger users of keyboard and voice input computer-based composition tasks. Proceedings of the ACM Conference on Human Factors in Computer Systems--CHI '86 (pp.205-211). New York: ACM Press. Google ScholarGoogle Scholar
  395. Omori, M., Watanabe, T., Takai, J., Takada, H., & Miyao, M. (2002). Visibility and characteristics of the mobile phones for elderly people. Behaviour and Information Technology, 21 , 313-316.Google ScholarGoogle ScholarCross RefCross Ref
  396. Quadrello, T., Hurme, H., Maenzinger, J., Smith, P. K., Viesson, M., Vida, S., & Westerback, S. (2005). Grandparents use of new communication technologies in a European perspective. European Journal of Ageing, 2 , 200-207.Google ScholarGoogle ScholarCross RefCross Ref
  397. Read, J. C., & Horton, M. (2004). The usability of digital tools in the primary classroom. Proceedings of EdMedia2004 (pp.4386-4391). New York: Association for the Advancement of Computing in Education.Google ScholarGoogle Scholar
  398. Read, J. C., & Horton, M. (2006). When teenagers tType. Proceedings of the BCS HCI Conference--HCI2006 . London: British Computer Society.Google ScholarGoogle Scholar
  399. Read, J. C., MacFarlane, S. J., & Casey, C. (2001). Measuring the usability of text input methods for children. Proceedings of the BCS HCI Conference--HCI 2001--People and Computers Series XV (pp.559-572). London: Springer-Verlag.Google ScholarGoogle Scholar
  400. Read, J. C., MacFarlane, S. J., & Horton, M. (2004a). The usability of handwriting recognition for writing in the primary classroom. Proceedings of the BCS HCI Conference-- HCI 2004--People and Computers Series XVIII (pp.135-150). London: Springer-Verlag.Google ScholarGoogle Scholar
  401. Read, J. C., Mazzone, E., & Horton, M. (2005). Recognition errors and recognizing errors--Children writing on the tablet PC. In Lecture notes in computer science (pp.1096-1099). Berlin: Springer-Verlag. Google ScholarGoogle Scholar
  402. Read, J. C., Newell, A., Zajicek, M., Petrie, H., & Edwards, A. (2004b). Extreme HCI?-- Challenges and opportunities. Proceedings of the BCS HCI Conference--HCI 2004 (pp.213-214). London: British Computer Society.Google ScholarGoogle Scholar
  403. Salthouse, T. A. (1984). Effects of age and skill in typing. Journal of Experimental Psychology General, 113 , 345-371.Google ScholarGoogle Scholar
  404. Shneiderman, B. (2003). Promoting universal usability with multi-layer interface design. Proceedings of the Conference on Universal Usability--CUU '03, 10-11 November 2003, Vancouver, BC, Canada (pp.1-8). Google ScholarGoogle ScholarDigital LibraryDigital Library
  405. Sperduto, R. D., Seigel, D., Roberts, J., & Rowland, M. (1983). Prevalence of myopia in the United States. Archives of Ophthalmology, 101 , 405-407.Google ScholarGoogle ScholarCross RefCross Ref
  406. Sugden, D. A. (1980). Movement speed in children. Journal of Motor Behavior, 12 , 125-132.Google ScholarGoogle ScholarCross RefCross Ref
  407. Wright, P., Bartram, C., Rogers, N., Emslie, H., Evans, J., Wilson, B., & Belt, S. (2000). Text entry on handheld computers by older users. Ergonomics, 43 , 702-716.Google ScholarGoogle ScholarCross RefCross Ref
  408. Alliance for Technology Access (2004). Computer resources for people with disabilities: A guide to assistive technologies, tools and resources for people of all ages (4th ed.) . Alameda, CA: Hunter House. Google ScholarGoogle Scholar
  409. Alm, N., & Arnott, J. L. (1998). Computer-assisted conversation for non-vocal people using pre-stored texts. IEEE Transactions on Systems, Man and Cybernetics Part C, 28 , 318-328.Google ScholarGoogle ScholarDigital LibraryDigital Library
  410. Alm, N., Arnott, J. L., & Newell, A. (1992). Prediction and conversational momentum in an augmentative communication system. Communications of the ACM, 35 , 46-57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  411. Arnott, J. L., & Javed, M. Y. (1990). Small text corpora in character disambiguation for reduced typing keyboards. Proceedings of the Thirteenth Annual RESNA Conference (pp.181-182). Washington, DC: Resna Press.Google ScholarGoogle Scholar
  412. Arnott, J. L., & Javed, M. Y. (1992). Probabilistic character disambiguation for reduced keyboards using small text samples. Augmentative and Alternative Communication, 8 , 215-223.Google ScholarGoogle ScholarCross RefCross Ref
  413. Beukelman, D. R., & Mirenda, P. (2005). Augmentative and alternative communication: Supporting children & adults with complex communication needs (3rd ed.) . Baltimore: Paul H. Brookes Publishing.Google ScholarGoogle Scholar
  414. Brewster, S., Raty, V., & Kortekangas, A. (1996). Enhancing scanning input with nonspeech sounds. Proceedings of the Second Annual ACM Conference on Assistive Technologies-- ASSETS '96 (pp.10-14). New York: ACM Press. Google ScholarGoogle Scholar
  415. Brown, C. (1992). Assistive technology computers and people with disabilities. Communications of the ACM, 35 , 36-45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  416. Carpenter, T., McCoy, K, & Pennington, C. (1997). Schema-based organization of re-usable text in AAC: user-interface considerations. Proceedings of the RESNA '97 Annual Conference (pp.57-59). Washington, DC: Resna Press.Google ScholarGoogle Scholar
  417. Cook., S., & Hussey, A. (1995). Assistive technologies: Principles and practice . St. Louis: Mosby-Year Book.Google ScholarGoogle Scholar
  418. Cooper, W. (1983). Cognitive aspects of skilled typewriting . New York: Springer-Verlag.Google ScholarGoogle Scholar
  419. Demasco, P., & McCoy, K. F. (1992). Generating text from compressed input: an intelligent interface for people with severe motor impairments. Communications of the ACM, 35 , 68-79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  420. Dye, R., Alm, N., Arnott, J. L., Harper, G., & Morrison, A. (1998). A script-based AAC system for transactional interaction. Natural Language Engineering, 4 , 57-71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  421. Edwards, A. D. N. (1995). Extra-ordinary human-computer interaction: Interfaces for users with disabilities . Cambridge, UK: Cambridge University Press. Google ScholarGoogle Scholar
  422. Forrester Research, Inc. (2003). The wide range of abilities and its impact on computer technology . Cambridge, MA: Forrester Research.Google ScholarGoogle Scholar
  423. Foulds, R., Soede, M., & van Balkom, H. (1987). Statistical disambiguation of multicharacter keys applied to reduce motor requirements for augmentative and alternative communication. Augmentative and Alternative Communication, 3 , 192-195.Google ScholarGoogle ScholarCross RefCross Ref
  424. Harbusch, K., & Kühn, M. (2003). An evaluation study of two-button scanning with ambiguous keyboards. Proceedings of the 7th European Conference for the Advancement of Assistive Technology--AAATE 2003 (pp.954-958). Taastrup, Denmark: Association for the Advancement of Assistive Technology in Europe.Google ScholarGoogle Scholar
  425. Harper, G., Dye, R., Alm, N., Arnott, J. L., & Murray, I. R. (1998). A script-based speech aid for non-speaking people. Proceedings of the Institute of Acoustics, 20 , 289-295.Google ScholarGoogle Scholar
  426. Higginbotham, D. J., Wilkins, D. P., & Lesher, G. W. (1999). Frametalker: A communication frame and utterance-based augmentative communication device. Proceedings of the RESNA '99 Annual Conference (pp.40-42). Washington, DC: Resna Press.Google ScholarGoogle Scholar
  427. Hine, N., & Arnott, J. L. (2002a). A multimedia story-telling system for non-speaking people. Proceedings of the 10th International Conference on Augmentative & Alternative Communication-- ISAAC 2002, 21-23 November 2002, Vancouver, BC, Canada (pp.87-88).Google ScholarGoogle Scholar
  428. Hine, N., & Arnott, J. L. (2002b). A multimedia social interaction service for inclusive community living: Initial user trials. Universal Access in the Information Society, 2 , 8-17.Google ScholarGoogle ScholarCross RefCross Ref
  429. Hine, N., Arnott, J. L., & Smith, D. (2003). Design issues encountered in the development of a mobile multi-media augmentative communication service. Universal Access in the Information Society, 2 , 255-264.Google ScholarGoogle ScholarDigital LibraryDigital Library
  430. Hinterberger, T., Kubler, A., Kaiser, J., Neumann, N., & Birbaumer, N. (2003). A brain-computer interface (BCI) for the locked-in: comparison of different EEG classifications for the thought translation device. Clinical Neurophysiology, 114 , 416-425.Google ScholarGoogle ScholarCross RefCross Ref
  431. Jacko, J., & Vitense, H. (2001). A review and reappraisal of information technologies within a conceptual framework for individuals with disabilities. Universal Access in the Information Society, 1 , 56-76.Google ScholarGoogle Scholar
  432. Kamphuis, H. A., & Soede, M. (1989). KATDAS: A small number of keys direct access system. Proceedings of the 12th Annual RESNA Conference (pp.278-279). Washington, DC: Resna Press.Google ScholarGoogle Scholar
  433. King, M. T., Kushler, C. A., & Grover, D. A. (1995). JustType--Efficient communication with eight keys. Proceedings of the RESNA '95 Annual Conference (pp.94-96). Washington, DC: Resna Press.Google ScholarGoogle Scholar
  434. Koester, H. H. (2004). Usage, performance and satisfaction outcomes for experienced users of automatic speech recognition. Journal of Rehabilitation Research and Development 41 , 739-754.Google ScholarGoogle ScholarCross RefCross Ref
  435. Kreifeldt, J. G., Levine, S. L., & Iyengar, C. (1989). Reduced keyboard designs using disambiguation. Proceedings of the Human Factors Society 33rd Annual Meeting (pp.441-444). Santa Monica, CA: HFES.Google ScholarGoogle Scholar
  436. Kroemer, K. (2001). Keyboards and keying: An annotated bibliography of the literature from 1878 to 1999. Universal Access in the Information Society, 1 , 99-160.Google ScholarGoogle ScholarDigital LibraryDigital Library
  437. Lesher, G. W., Moulton, B. J., & Higginbotham, D. J. (1998). Optimal character arrangements for ambiguous keyboards. IEEE Transactions on Rehabilitation Engineering, 6 , 415-423.Google ScholarGoogle Scholar
  438. Levine, S. H., & Goodenough-Trepagnier, C. (1990). Customised text entry devices for motor-impaired users. Applied Ergonomics, 21 , 55-62.Google ScholarGoogle ScholarCross RefCross Ref
  439. Levine, S. H., Goodenough-Trepagnier, C., Getschow, C. O., & Minneman, S. L. (1987). Multi-character key text entry using computer disambiguation. Proceedings of the 10th Annual Conference on Rehabilitation Technology (pp.177-179). Washington, DC: Resna Press.Google ScholarGoogle Scholar
  440. Lyons, K., Starner, T., Plaisted, D., Fusia, J., Lyons, A., Drew, A., & Looney, E. (2004). Twiddler typing: One handed chording text entry for mobile phones. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp.671-678). New York: ACM Press. Google ScholarGoogle Scholar
  441. McCormack, D. (1990). The effects of keyguard use and pelvic positioning on typing speed and accuracy in a boy with cerebral palsy. American Journal of Occupational Therapy, 44 , 312-315.Google ScholarGoogle ScholarCross RefCross Ref
  442. McCoy, K. F., Hoag, L. A., & Bedrosian, J. L. (2003). Pragmatic theory and utterancebased systems: Application of the co-operative principle. Proceedings of the 7th ISAAC Research Symposium (pp.76-79). Toronto: ISAAC.Google ScholarGoogle Scholar
  443. McCoy, K. F., Pennington, C. A., & Badman, A. L. (1998). Compansion: From research prototype to practical integration. Natural Language Engineering, 4 , 73-95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  444. Millar, S., & Nisbet, P. (1993). Accelerated writing for people with disabilities . Edinburgh: University of Edinburgh, ISBN 1 898042 01 2.Google ScholarGoogle Scholar
  445. Minneman, S. L. (1985). A simplified touch-tone telecommunications aid for deaf and hearing impaired individuals. Proceedings of the 8th Annual Conference on Rehabilitation Technology (pp.209-211). Washington, DC: Resna Press.Google ScholarGoogle Scholar
  446. Moore, M. (2003). Frontiers of human-computer interaction: Direct-brain interfaces. In Frontiers of engineering: Reports on leading-edge engineering from the 2002 NAE Symposium on Frontiers of Engineering (pp.47-52). Washington, DC: National Academy of Sciences.Google ScholarGoogle Scholar
  447. Moulton, B. J., Lesher, G. W., & Higginbotham, D. J. (1999). A system for automatic abbreviation expansion. Proceedings of the RESNA Annual Conference (pp.55-57). Washington, DC: Resna Press.Google ScholarGoogle Scholar
  448. Newell, A., Arnott, J., Cairns, A., Ricketts, I., & Gregor, P. (1995). Intelligent systems for speech and language impaired people: A portfolio of research. In A. D. N. Edwards (Ed.), Extra-ordinary human-computer interaction: Interfaces for users with disabilities (pp.83-101). Cambridge, UK: Cambridge University Press. Google ScholarGoogle Scholar
  449. Nisbet, P., & Poon, P. (1998). Special access technology . Edinburgh: University of Edinburgh, ISBN 1 898042 11 X.Google ScholarGoogle Scholar
  450. Oommen, B. J., Valiveti, R. S., & Zgierski, J. R. (1992). Correction to 'An adaptive learning solution to the keyboard optimization problem.' IEEE Transactions on Systems, Man and Cybernetics, 22 , 1233-1243.Google ScholarGoogle Scholar
  451. Sears, A., Karat, C.-M., Oseitutu, K., Karimullah, A., & Feng, J. (2001). Productivity, satisfaction, and interaction strategies of individuals with spinal cord injuries and traditional users interacting with speech recognition software. International Journal of Universal Access in the Information Society, 1 , 14-15.Google ScholarGoogle Scholar
  452. Sears, A., & Young, M. (2003). Physical disabilities and computing technology: An analysis of impairments. In J. Jacko & A. Sears (Eds.), The human-computer interaction handbook: Fundamentals, evolving technologies and emerging applications (pp.482-503). Hillsdale, NJ: Lawrence Erlbaum. Google ScholarGoogle Scholar
  453. Shaw, R., Loomis, A., & Crisman, E. (1995). Input and integration: Enabling technologies for disabled users. In A. D. N. Edwards (Ed.), Extra-ordinary human-computer interaction: Interfaces for users with disabilities (pp.263-278). Cambridge, UK: Cambridge University Press. Google ScholarGoogle Scholar
  454. Simpson, R., & Koester, H. H. (1999). Adaptive one-switch row-column scanning. IEEE Transactions on Rehabilitation Engineering, 7 , 464-473.Google ScholarGoogle ScholarCross RefCross Ref
  455. Todman, J. (1999). The use of stored text for socially effective conversation. Proceedings of the RESNA Annual Conference (pp.16-18). Washington, DC: Resna Press.Google ScholarGoogle Scholar
  456. Todman, J. (2000). Rate and quality of conversations using a text-storage AAC system: Single-case training study. Augmentative and Alternative Communication, 16 , 164-179, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  457. Todman, J. (2003). Pragmatic aspects of communication. Proceedings of the 7th ISAAC Research Symposium (pp.68-75). Toronto: ISAAC.Google ScholarGoogle Scholar
  458. Todman, J., & Alm, N. (1997). Pragmatics and AAC approaches to conversational goals. Proceedings of the ACL/EACL Workshop on Natural Language Processing for Communication Aids (pp.1-8). Madrid: Association for Computational Linguistics.Google ScholarGoogle Scholar
  459. Trewin, S., & Pain, H. (1998). A study of two keyboard aids to accessibility. In H. L. Johnson, L. Nigay, & C. Roast (Eds.), People and computers XIII: Proceedings of HCI 98 (pp.83-97). Berlin: Springer-Verlag. Google ScholarGoogle Scholar
  460. Trewin, S., & Pain, H. (1999). Keyboard and mouse errors due to motor disabilities. International Journal of Human-Computer Studies, 50 , 109-144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  461. Vanderheiden, G. (1984). A high-efficiency flexible keyboard input acceleration technique: Speedkey. Proceedings of the 2nd International Conference on Rehabilitation Engineering (pp.353-354). Washington, DC: Resna Press.Google ScholarGoogle Scholar
  462. von Tetzchner, S., & Martinsen, H. (2000). Introduction to augmentative and alternative communication (2nd ed.) . London: Whurr Publishers.Google ScholarGoogle Scholar
  463. Waller, A., O'Mara, D., Tait, L., Booth, L., Brophy-Arnott, M. B., & Hood, H. E. (2001). Using written stories to support the use of narrative in conversational interactions: case study. Augmentative and Alternative Communication, 17 , 221-232.Google ScholarGoogle ScholarCross RefCross Ref
  464. Ward, D. J., & Mackay, D. J. (2002). Fast hands-free writing by gaze direction. Nature, 418 , 838.Google ScholarGoogle ScholarDigital LibraryDigital Library
  465. Witten, I. H. (1982). Principles of computer speech (pp.247-249). London: Academic Press. Google ScholarGoogle Scholar
  466. Wobbrock, J., Myers, B., & Kembel, J. (2003). EdgeWrite: a stylus-based text entry method designed for high accuracy and stability of motion. Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology (pp.61-70). New York: ACM Press. Google ScholarGoogle Scholar
  467. Wolpaw, J. R., Birbaumer, N., McFarland, D., Pfurtscheller, G., & Vaughan, T. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113 , 767-791.Google ScholarGoogle Scholar
  468. Adler, M. (1973). The writing machine . London: Allen & Unwin.Google ScholarGoogle Scholar
  469. Asakawa, C., Takagi, H., Ino, S., & Ifukube, T. (2003). Maximum listening speeds for the blind. Proceedings of the 9th International Conference on Auditory Display (ICAD 2003), 6-9 July 2003, Boston (pp.276-279).Google ScholarGoogle Scholar
  470. Boyd, L. H., Boyd, W. L., & Vanderheiden, G. C. (1990). The graphical user interface: Crisis, danger and opportunity. Journal of Visual Impairment and Blindness , December 1990, 496-502.Google ScholarGoogle Scholar
  471. Boyd, L. H., Boyd, W. L., & Vanderheiden, G. C. (1991). Graphics-based computers and the blind: Riding the tides of change. Proceedings of the 6th Annual Conference Technology and Persons with Disabilities (CSUN), Los Angeles. Google ScholarGoogle Scholar
  472. Buxton, W., Foulds, R., Rosen, M., Scadden, L., & Shein, F. (1986). Human interface design and the handicapped user. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '86), 13-17 April 1986, Boston (pp.291-297). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  473. Byrne, M. D., Anderson, J. R., Douglass, S., & Matessa, M. (1999). Eye tracking the visual search of click-down menus. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '99), 15-20 May 1999, Pittsburgh (pp.402-409). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  474. Edwards, W. K., Mynatt, E. D., & Stockton, K. (1995). Access to graphical interfaces for blind users. Interactions, 2 , 54-67. New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  475. Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human-Computer Interaction, 12 , 391-438. Hillsdale, NJ: Lawrence Erlbaum Associates. Google ScholarGoogle ScholarDigital LibraryDigital Library
  476. Lahiri, A., Chattopadhyay, S. J., and Basu, A. (2005). Sparsha: a comprehensive Indian language toolset for the blind. Proceedings of the 7th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '05), 9-12 October 2005, Baltimore (pp.114-120). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  477. Lee, S., Hong, S. H., & Jeon, J. W. (2003). Designing a universal keyboard using chording gloves. Proceedings of the 2003 Conference on Universal Usability (CUU'03), 10-11 November 2003, Vancouver, British Columbia, Canada (pp.142-147). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  478. Linvill, J. G., & Bliss, J. C. (1966). A direct translation reading aid for the blind. Proceedings of the IEEE, 54 , 40-51.Google ScholarGoogle ScholarCross RefCross Ref
  479. Lyons, K., Starner, T., Plaisted, D., Fusia, J., Lyons, A., Drew, A., & Looney, E. W. (2004). Twiddler typing: One-handed chording text entry for mobile phones. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '04), 24-29 April 2004, Vienna, Austria (pp.671-678). New York: ACM Press. Google ScholarGoogle Scholar
  480. MacKenzie, I. S., & Soukoreff, R. W. (2002). Text entry for mobile computing: Models and methods, theory and practice. Human-Computer Interaction, 17 , 147-198.Google ScholarGoogle ScholarCross RefCross Ref
  481. Masui, T. (1998). An efficient text input method for pen-based computers. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '98), 18-23 April 1998, Los Angeles (pp.328-335). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  482. Mynatt, E. D., & Weber, G. (1994). Nonvisual presentation of graphical user interfaces: contrasting two approaches. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '94), 24-28 April 1994, Boston (pp.166-172). New York: ACM Press. Google ScholarGoogle Scholar
  483. Raman, T. V. (1996). Emacspeak--A speech interface. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '96), 13-18 April 1996, Vancouver, British Columbia, Canada (pp.66-71). New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  484. Scadden, L. A. (1984). Blindness in the information age: Equality or irony? Journal of Visual Impairment and Blindness, 78 , 394-400.Google ScholarGoogle Scholar
  485. Takagi, H., Asakawa, C., Fukuda, K., & Maeda, J. (2004). Accessibility designer: Visualizing usability for the blind. Proceedings of the 6th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '04), 18-20 October 2004, Atlanta (pp.177-184). New York: ACM Press. Google ScholarGoogle Scholar
  486. Thatcher, J. (1994). Screen reader/2: Access to OS/2 and the graphical user interface. Proceedings of the First Annual ACM Conference on Assistive Technologies (ASSETS '94), 31 October-1 November 1994, Marina Del Rey, CA (pp.39-46). New York: ACM Press. Google ScholarGoogle Scholar
  487. Theofanos, M. F., & Redish, J. G. (2003). Bridging the gap between accessibility and usability. interactions, 10 , 36-51. New York: ACM Press. Google ScholarGoogle Scholar
  488. Wobbrock, J. O., Myers, B. A., & Aung, H. H. (2004a). Writing with a joystick: A comparison of date stamp, selection keyboard, and EdgeWrite. Proceedings of the 2004 Conference on Graphics Interface, 17-19 May 2004, London, ON, Canada, Vol. 62 (pp.1-8). Waterloo, ON: School of Computer Science, University of Waterloo. Google ScholarGoogle Scholar
  489. Wobbrock, J. O., Myers, B. A., Aung, H. H., & LoPresti, E. F. (2004b). Text entry from power wheelchairs: EdgeWrite for joysticks and touchpads. Proceedings of the 6th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '04), 18-20 October 2004, Atlanta . New York: ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  490. World Health Organization (2004). Fact Sheet 282: Magnitude and causes of visual impairment: http://www.who.int/mediacentre/factsheets/fs282/en/Google ScholarGoogle Scholar

Cited By

  1. ACM
    Zhou C, Yan Z, Ram A, Gu Y, Xiang Y, Liu C, Huang Y, Ooi W and Zhao S GlassMail: Towards Personalised Wearable Assistant for On-the-Go Email Creation on Smart Glasses Proceedings of the 2024 ACM Designing Interactive Systems Conference, (372-390)
  2. ACM
    Lee H, Kim A, Bae S and Lee U S-ADL: Exploring Smartphone-based Activities of Daily Living to Detect Blood Alcohol Concentration in a Controlled Environment Proceedings of the CHI Conference on Human Factors in Computing Systems, (1-25)
  3. ACM
    Nama T and Samanta D Designing a Sequential Hybrid BCI Speller on Fusion of Motor Imagery and Steady-State Visually Evoked Potentials EEG Data Proceedings of the Fourteenth Indian Conference on Computer Vision, Graphics and Image Processing, (1-9)
  4. ACM
    Huh J, Kwag S, Kim I, Popov A, Park Y, Cho G, Lee J, Kim H and Lee C (2023). On the Long-Term Effects of Continuous Keystroke Authentication, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 7:2, (1-32), Online publication date: 12-Jun-2023.
  5. ACM
    Kimura N, Gemicioglu T, Womack J, Li R, Zhao Y, Bedri A, Su Z, Olwal A, Rekimoto J and Starner T SilentSpeller: Towards mobile, hands-free, silent speech text entry using electropalatography Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, (1-19)
  6. ACM
    Wimmer C, Stainer B and Grechenig T On the Impact of Competitive Gameplay on Text Entry Performance - A Study Based on a Mobile Typing Game CHI Conference on Human Factors in Computing Systems Extended Abstracts, (1-6)
  7. ACM
    Obukhova N A Meta-Analysis of Effect Sizes of CHI Typing Experiments Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, (1-7)
  8. ACM
    Samanta D and Chakraborty T (2020). VectorEntry, ACM Transactions on Accessible Computing, 13:3, (1-29), Online publication date: 30-Sep-2020.
  9. ACM
    Rakhmetulla G and Arif A Senorita: A Chorded Keyboard for Sighted, Low Vision, and Blind Mobile Users Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, (1-13)
  10. ACM
    Sengupta K, Menges R, Kumar C and Staab S Impact of variable positioning of text prediction in gaze-based text entry Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications, (1-9)
  11. ACM
    Schlögl R, Wimmer C and Grechenig T Hyper Typer Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, (1-6)
  12. ACM
    Vertanen K, Gaines D, Fletcher C, Stanage A, Watling R and Kristensson P VelociWatch Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, (1-14)
  13. ACM
    Jain A, Jain M, Jain G and Tayal D (2018). “UTTAM”, ACM Transactions on Asian and Low-Resource Language Information Processing, 18:1, (1-26), Online publication date: 8-Jan-2019.
  14. Geary M and Lind M (2018). Smart Phone Keyboard Layout Usability, International Journal of Technology and Human Interaction, 14:4, (110-135), Online publication date: 1-Oct-2018.
  15. ACM
    Rajanna V and Hansen J Gaze typing in virtual reality Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, (1-10)
  16. ACM
    Speicher M, Feit A, Ziegler P and Krüger A Selection-based Text Entry in Virtual Reality Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, (1-13)
  17. Turner C, Chaparro B and He J (2018). Texting while walking, Journal of Usability Studies, 13:2, (94-118), Online publication date: 1-Feb-2018.
  18. ACM
    Ahn S, Heo S and Lee G Typing on a Smartwatch for Smart Glasses Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces, (201-209)
  19. ACM
    Seim C, Doering N, Zhang Y, Stuerzlinger W and Starner T (2017). Passive Haptic Training to Improve Speed and Performance on a Keypad, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1:3, (1-13), Online publication date: 11-Sep-2017.
  20. ACM
    Benoit G, Poor G and Jude A Bimanual Word Gesture Keyboards for Mid-air Gestures Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, (1500-1507)
  21. ACM
    Seim C, Reynolds-Haertle S, Srinivas S and Starner T Tactile taps teach rhythmic text entry Proceedings of the 2016 ACM International Symposium on Wearable Computers, (164-171)
  22. ACM
    Dalvi G, Ahire S, Emmadi N, Joshi M, Joshi A, Ghosh S, Ghone P and Parmar N Does prediction really help in Marathi text input? Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services, (35-46)
  23. Poirier F and Belatar M UniWatch Proceedings, Part II, of the 18th International Conference on Human-Computer Interaction. Interaction Platforms and Techniques - Volume 9732, (341-349)
  24. ACM
    Katsuragawa K, Wallace J and Lank E Gestural Text Input Using a Smartwatch Proceedings of the International Working Conference on Advanced Visual Interfaces, (220-223)
  25. ACM
    Quinn P and Zhai S A Cost-Benefit Study of Text Entry Suggestion Interaction Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, (83-88)
  26. ACM
    Nicolau H, Montague K, Guerreiro T, Rodrigues A and Hanson V Typing Performance of Blind Users Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, (273-280)
  27. ACM
    Komninos A, Nicol E and Dunlop M Designed with Older Adults to SupportBetter Error Correction in SmartPhone Text Entry Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, (797-802)
  28. ACM
    Wang C, Chu W, Chiu P, Hsiu M, Chiang Y and Chen M PalmType Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, (153-160)
  29. ACM
    Nirjon S, Gummeson J, Gelb D and Kim K TypingRing Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, (227-239)
  30. Godard N, Martin B and Isokoski P Joker key in learning a new text entry method Proceedings of HCI Korea, (12-19)
  31. ACM
    Seim C, Chandler J, DesPortes K, Dhingra S, Park M and Starner T Passive haptic learning of Braille typing Proceedings of the 2014 ACM International Symposium on Wearable Computers, (111-118)
  32. ACM
    Feit A and Oulasvirta A PianoText Proceedings of the 2014 conference on Designing interactive systems, (1045-1054)
  33. ACM
    Sharma M and Samanta D (2014). Word Prediction System for Text Entry in Hindi, ACM Transactions on Asian Language Information Processing, 13:2, (1-29), Online publication date: 1-Jun-2014.
  34. ACM
    Chakraborty T, Sarcar S and Samanta D Design and evaluation of a dwell-free eye typing technique CHI '14 Extended Abstracts on Human Factors in Computing Systems, (1573-1578)
  35. ACM
    Bi X, Ouyang T and Zhai S Both complete and correct? Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (2297-2306)
  36. ACM
    Markussen A, Jakobsen M and Hornbæk K Vulture Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (1073-1082)
  37. ACM
    Sarcar S and Panwar P Eyeboard++ Proceedings of the 11th Asia Pacific Conference on Computer Human Interaction, (354-363)
  38. ACM
    Sharma M, Saha P, Sarcar S and Samanta D Error quantifying metrics for text entry systems augmented with word prediction Proceedings of the 11th Asia Pacific Conference on Computer Human Interaction, (45-54)
  39. Schmidt M, Fibich A and Weber G MTIS Proceedings of the First International Conference on Distributed, Ambient, and Pervasive Interactions - Volume 8028, (62-71)
  40. ACM
    Bi X, Azenkot S, Partridge K and Zhai S Octopus Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (543-552)
  41. ACM
    Song W, Finch A, Tanaka-Ishii K, Yasuda K and Sumita E (2013). picoTrans, ACM Transactions on Interactive Intelligent Systems, 3:1, (1-31), Online publication date: 1-Apr-2013.
  42. Mascetti S, Bernareggi C and Belotti M TypeInBraille Proceedings of the 13th international conference on Computers Helping People with Special Needs - Volume Part II, (615-622)
  43. Baldwin T and Chai J Autonomous self-assessment of autocorrections Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, (710-719)
  44. ACM
    MacKenzie I, Soukoreff R and Helga J 1 thumb, 4 buttons, 20 words per minute Proceedings of the 24th annual ACM symposium on User interface software and technology, (471-480)
  45. Oliveira J, Guerreiro T, Nicolau H, Jorge J and Gonçalves D BrailleType Proceedings of the 13th IFIP TC 13 international conference on Human-computer interaction - Volume Part I, (100-107)
  46. Guerreiro T, Oliveira J, Benedito J, Nicolau H, Jorge J and Gonçalves D Blind people and mobile keypads Proceedings of the 13th IFIP TC 13 international conference on Human-computer interaction - Volume Part I, (65-82)
  47. Rudchenko D, Paek T and Badger E Text text revolution Proceedings of the 9th international conference on Pervasive computing, (206-213)
  48. ACM
    Paek T and Hsu B Sampling representative phrase sets for text entry experiments Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (2477-2480)
  49. ACM
    Sporka A, Felzer T, Kurniawan S, Poláček O, Haiduk P and MacKenzie I CHANTI Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (2463-2472)
  50. ACM
    Paek T, Chang K, Almog I, Badger E and Sengupta T A practical examination of multimodal feedback and guidance signals for mobile touchscreen keyboards Proceedings of the 12th international conference on Human computer interaction with mobile devices and services, (365-368)
  51. Miró-Borrás J, Bernabeu-Soler P, Llinares R and Igual J Evaluation of an ambiguous-keyboard prototype scanning-system with word and character disambiguation Proceedings of the 24th BCS Interaction Specialist Group Conference, (403-411)
  52. ACM
    Nicolau H, Guerreiro T, Jorge J and Gonçalves D Proficient blind users and mobile text-entry Proceedings of the 28th Annual European Conference on Cognitive Ergonomics, (19-22)
  53. Miró-Borrás J, Bernabeu-Soler P, Llinares R and Igual J An ambiguous keyboard based on "character graphical association" for the severely physically handicapped Proceedings of the 12th international conference on Computers helping people with special needs, (140-143)
  54. Miró-Borrás J, Bernabeu-Soler P, Llinares R and Igual J A prototype scanning system with an ambiguous keyboard and a predictive disambiguation algorithm Proceedings of the 12th international conference on Computers helping people with special needs, (136-139)
  55. Felzer T, MacKenzie I, Beckerle P and Rinderknecht S Qanti Proceedings of the 12th international conference on Computers helping people with special needs, (128-135)
  56. ACM
    Mackenzie I and Felzer T (2010). SAK, ACM Transactions on Computer-Human Interaction, 17:3, (1-39), Online publication date: 1-Jul-2010.
  57. ACM
    Jones E, Alexander J, Andreou A, Irani P and Subramanian S GesText Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (2173-2182)
  58. ACM
    Morimoto C and Amir A Context switching for fast key selection in text entry applications Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, (271-274)
  59. ACM
    Gunawardana A, Paek T and Meek C Usability guided key-target resizing for soft keyboards Proceedings of the 15th international conference on Intelligent user interfaces, (111-118)
  60. ACM
    Amershi S, Morris M, Moraveji N, Balakrishnan R and Toyama K Multiple mouse text entry for single-display groupware Proceedings of the 2010 ACM conference on Computer supported cooperative work, (169-178)
  61. Räihä K Some applications of string algorithms in human-computer interaction Algorithms and Applications, (196-209)
  62. ACM
    Guerreiro T, Nicolau H, Jorge J and Gonçalves D NavTap Proceedings of the 11th international ACM SIGACCESS conference on Computers and accessibility, (99-106)
  63. ACM
    MacKenzie I The one-key challenge Proceedings of the 11th international ACM SIGACCESS conference on Computers and accessibility, (91-98)
  64. ACM
    Ni T and Baudisch P Disappearing mobile devices Proceedings of the 22nd annual ACM symposium on User interface software and technology, (101-110)
  65. ACM
    Paek T, Lee B and Thiesson B Designing phrase builder Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services, (1-10)
  66. Kano A and Read J Text input error categorisation Proceedings of the 23rd British HCI Group Annual Conference on People and Computers: Celebrating People and Technology, (293-302)
  67. ACM
    McCallum D, Mak E, Irani P and Subramanian S PressureText CHI '09 Extended Abstracts on Human Factors in Computing Systems, (4519-4524)
  68. Miró-Borrás J and Bernabeu-Soler P (2009). Text entry in the e-commerce age, Journal of Theoretical and Applied Electronic Commerce Research, 4:1, (101-112), Online publication date: 1-Apr-2009.
  69. ACM
    Belatar M and Poirier F Text entry for mobile devices and users with severe motor impairments Proceedings of the 10th international ACM SIGACCESS conference on Computers and accessibility, (209-216)
  70. ACM
    Belatar M and Poirier F HandiGlyph Proceedings of the 20th Conference on l'Interaction Homme-Machine, (81-84)
  71. ACM
    Guerreiro T, Lagoá P, Nicolau H, Santana P and Jorge J Mobile text-entry models for people with disabilities Proceedings of the 15th European conference on Cognitive ergonomics: the ergonomics of cool interaction, (1-4)
  72. Kano A, Read J, Dix A and MacKenzie I ExpECT Proceedings of the 21st British HCI Group Annual Conference on People and Computers: HCI...but not as we know it - Volume 1, (147-156)
Contributors
  • York University
  • University of Tokyo, Research Center for Advanced Science and Technology

Reviews

Susan Loretta Fowler

This book starts with a heavy dose of statistics and formulas. "Oh my," I thought, "What did I get myself into__?__" Chapter 1 is an overview of text entry systems, starting with the early typewriter-interesting if you've never heard any of it before. Chapter 2, "Language Models for Text Entry," by Tanaka-Ishii, one of the editors, jumps right into n -gram, hidden Markov, adaptive, and other mathematical models for predicting what comes next when a writer types a letter or two. Chapter 3, by Wobbrock, goes into mathematically measuring text entry speeds and efficiencies (in other words, if you can enter text quickly but can't correct typographical errors easily, the method is inefficient). Chapter 4, by Mackenzie, describes how to set up experiments to evaluate text entry speed and efficiency. It contains less math, but is still abstract. I am not averse to math, but I never got a good grounding in it in school. It was therefore a struggle to pay attention to the points the authors were making in between formulas. The effort was worth it, though, since subsequent chapters refer to these analysis methods. And why is that important__?__ It's important because this isn't just a book about various text entry methods-interesting enough on their own-but about which ones work, for whom, and how well. Several text entry systems are described in Part 2 (chapters 5 to 9). Chapter 5 covers various systems for entering text on mobile phones. To deal with the problem of having a small number of keys on a mobile device, each of which needs to carry more than one letter, different types of keyboards and different kinds of completion algorithms are needed. Chapter 6 discusses handwriting recognition interfaces for English or Latin alphabets. Shape writing that uses pen movements over an on-screen alphabet to create words is covered in chapter 7. This looks like it would be a lot of fun. Experiments seem to indicate that it is quick to learn and use. The next chapter deals with speech-based interfaces for capturing natural speech and dictation. Chapter 9 discusses eye tracking, which is used by people with motor disorders. There are a few types: text entry by gazing at a letter and pausing for a set number of seconds to select it; gazing and blinking or moving eyes to the left or right to select it; and a zooming interface that lets users navigate through the letters and select words predicted by the software. Part 3 (chapters 10 to 13) covers non-Latin languages and character entry systems. Chinese, Japanese, Korean, Thai, Hebrew, Arabic, various Indian languages, Turkish, Cyrillic, and other interesting text entry puzzles on both keyboards and mobile devices are covered. Part 4 (chapters 14 to 16) discusses text input for children and the elderly, as well as for those with either physical or visual impairments (for example, those trying to enter information in a moving vehicle). Unlike many compilations, each chapter in this book is both well written and dense with information. This is remarkable because it is hard to get one good book out of many authors. Since each chapter also includes information about the research done on the efficiency of the entry method, the editors must have also had their authors back up all claims with data. If your organization has anything at all to do with text entry systems, you'll find this book invaluable. Online Computing Reviews Service

Access critical reviews of Computing literature here

Become a reviewer for Computing Reviews.

Recommendations