Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1766851.1766876guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Toward memory-efficient linear solvers

Published: 26 June 2002 Publication History

Abstract

We describe a new technique for solvinga sparse linear system Ax = b as a block system AX = B, where multiple starting vectors and right-hand sides are chosen so as to accelerate convergence. Efficiency is gained by reusing the matrix A in block operations with X and B. Techniques for reducingthe cost of the extra matrix-vector operations are presented.

References

[1]
Field, M.: Optimizing a parallel conjugate gradient solver. SIAM J. Sci. Stat. Comput. 19 (1998) 27-37. 315
[2]
Simon, H., Yeremin, A.: A new approach to construction of efficient iterative schemes for massively parallel applications: variable block CG and BiCG methods and variable block Arnoldi procedure. In R. Sincovec et al., ed.: Parallel Processingfor Scientific Computing. (1993) 57-60. 315
[3]
Anderson,W.K., Gropp, W.D., Kaushik, D., Keyes, D. E., Smith, B. F.: Achieving high sustained performance in an unstructured mesh CFD application. In: Proceedings of Supercomputing 99. (1999) Also published as Mathematics and Computer Science Division, Argonne National Laboratory, Technical Report ANL/MCS-P776-0899 315
[4]
Farhat, C., Macedo, A., Lesoinne, M.: A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems. Numerische Mathematik 85 (2000) 283-308. 315
[5]
Dongarra, J., Hammarling, S., Sorensen, D.: Block reduction of matrices to condensed form for eigenvalue computations. J. Comp. Appl. Math. 27 (1989) 215-227. 315
[6]
Dongarra, J., DuCroz, J., Hammarling, S., Hanson, R.: An extended set of Fortran Basic Linear Algebra Subprograms. ACM Trans. Math. Software 14 (1988) 1-17. 315
[7]
Dongarra, J., DuCroz, J., Duff, I., Hammarling, S.: A set of level 3 Basic Linear Algebra Subprograms. ACM TOMS 16 (1990) 1ff 315
[8]
Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Thomas, R., Yelick, K.: A case for intelligent RAM. IEEE Micro March/April (1997) 34-44 315
[9]
Gropp, W., Kaushik, D., Keyes, D., Smith, B.: Toward realistic performance bounds for implicit CFD codes. In the Proceedings of the International Conference on Parallel CFD (1999). 315
[10]
Kaushik, D., Keyes, D.: Efficient parallelization of an unstructured grid solver: A memory-centric approach. In the Proceedings of the International Conference on Parallel CFD (1999) 315
[11]
Behling, S., Bell, R., Farrell, P., Holthoff, H., O'Connell, F., Weir, W.: The POWER4 Processor Introduction and Tuning Guide. IBM Redbooks (2001). 316, 323
[12]
Gropp, W., et al.: PETSc 2.0 for MPI. http://www.mcs.anl.gov/petsc/ (1999). 316
[13]
Basic Linear Algebra Subprograms Technical (BLAST) Forum: Document for the Basic Linear Algebra Subprograms (BLAS) standard. http://www.netlib.org/utk/papers/blast-forum.html (1998) 316
[14]
Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stds. 49 (1952) 409-436. 316
[15]
Nachtigal, N.M., Reddy, S.C., Trefethen, L.N.: How fast are nonsymmetric matrix iterations? SIAM Journal on Matrix Analysis Applications 13 (1992) 778-795. 316
[16]
Saad, Y., Schultz, M.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 7 (1986) 856-869. 317
[17]
Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company (1996). 317, 325
[18]
Chapman, A., Saad, Y.: Deflated and augmented Krylov subspace techniques. Linear Algebra with Applications 4 (1997) 43-66. 317, 318
[19]
Morgan, R.B.: A restarted GMRES method augmented with eigenvectors. SIAM Journal on Matrix Analysis and Applications 16 (1995) 1154-1171. 317, 318, 320
[20]
Morgan, R.B.: Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations. SIAM Journal of Matrix Analysis and Applications 21 (2000) 1112-1135. 317
[21]
Saad, Y.: Analysis of augmented Krylov subspace methods. SIAM Journal on Matrix Analysis and Applications 18 (1997) 435-449. 317
[22]
Baglama, J., Calvetti, D., Golub, G., Reichel, L.: Adaptively preconditioned GMRES algorithms. SIAM Journal on Scientific Computing 20 (1998) 243-269. 318
[23]
Erhel, J., Burrage, K., Pohl, B.: Restarted GMRES preconditioned by deflation. Journal of Computational Applied Mathematics 69 (1996) 303-318. 318
[24]
Eiermann, M., Ernst, O. G., Schneider, O.: Analysis of acceleration strategies for restarted minimum residual methods. Journal of Computational and Applied Mathematics 123 (200) 261-292. 318, 320
[25]
van der Vorst, H. A., Vuik, C.: GMRESR: a family of nested GMRES methods. Numerical Linear Algebra with Applications 1 (1994) 369-386. 318, 319, 320
[26]
de Sturler, E.: Nested Krylov methods based on GCR. Journal of Computational and Applied Mathematics 67 (1996) 15-41. 318, 319, 320
[27]
de Sturler, E., Fokkema, D.: Nested Krylov methods and preserving orthogonality. In Melson, N., Manteuffel, T., McCormick, S., eds.: Sixth Copper Mountain Conference on Multigrid Methods. Part 1 of NASA conference Publication 3324, NASA (1993) 111-126. 318
[28]
de Sturler, E.: Truncation strategies for optimal Krylov subspace methods. SIAM Journal on Numerical Analysis 36 (1999) 864-889. 318
[29]
Nachitgal, N.M., Reichel, L., Trefethen, L.N.: A hybrid GMRES algorithm for nonsymmetric linear systems. SIAM Journal of Matrix Analysis Applications 13 (1992) 796-825. 319
[30]
Manteuffel, T. A., Starke, G.: On hybrid iterative methods for nonsymmetric systems of linear equations. Numerical Mathematics 73 (1996) 489-506. 319
[31]
Joubert, W.: A robust GMRES-base adaptive polynomial preconditioning algorithm for nonsymmetric linear systems. SIAM Journal on Scientific Computing 15 (1994) 427-439. 319
[32]
National Institute of Standards and Technology, Mathematical and Computational Sciences Division: Matrix Market. http://math.nist.gov/MatrixMarket (2002). 321
[33]
S. Naffziger, Hammond, G.: The implementation of the next generation 64bitanium microprocessor. In: Proceedings of the IEEE International Solid-State Circuits Conference. (2002). 323
[34]
Kessler, R. E., McLellan, E. J., Webb, D.A.: The alpha 21264 microprocessor architecture (2002) http://www.compaq.com/alphaserver/download/ev6chip.pdf. 323
[35]
DeGelas, J.: Alphalinux: The penguin drives a Ferrari (2000) http://www.aceshardware.com/Spades 323
[36]
Hennessey, J., Patterson, D.: Computer Architecture: A Quantitative Approach. 2nd edn. Morgan Kaufmann (1996). 324
[37]
Dongarra, J., Bunch, J., Moler, C., Stewart, G.: LINPACK Users' Guide. SIAM Publications (1979). 324
[38]
Gropp, W.D., Kaushik, D.K., Keyes, D. E., B. F. Smith: Toward realistic performance bounds for implicit CFD codes. In A. Ecer et al., ed.: Proceedings of Parallel CFD'99, Elsevier (1999). 324

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
VECPAR'02: Proceedings of the 5th international conference on High performance computing for computational science
June 2002
732 pages
ISBN:3540008527
  • Editors:
  • José M. L. M. Palma,
  • A. Augusto Sousa,
  • Jack Dongarra,
  • Vicente Hernández

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 26 June 2002

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 6
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media