Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1885031.1885038guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Log-linear convergence of the scale-invariant (µ/µw, λ)-ES and optimal µ for intermediate recombination for large population sizes

Published: 11 September 2010 Publication History

Abstract

Evolution Strategies (ESs) are population-based methods well suited for parallelization. In this paper, we study the convergence of the (µ/µw, λ)-ES, an ES with weighted recombination, and derive its optimal convergence rate and optimal µ especially for large population sizes. First, we theoretically prove the log-linear convergence of the algorithm using a scale-invariant adaptation rule for the step-size and minimizing spherical objective functions and identify its convergence rate as the expectation of an underlying random variable. Then, using Monte-Carlo computations of the convergence rate in the case of equal weights, we derive optimal values for µ that we compare with previously proposed rules. Our numerical computations show also a dependency of the optimal convergence rate in ln(λ) in agreement with previous theoretical results.

References

[1]
Schumer, M., Steiglitz, K.: Adaptive step size random search. IEEE Transactions on Automatic Control 13, 270-276 (1968)
[2]
Rechenberg, I.: Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart (1973)
[3]
Schwefel, H.-P.: Collective phenomena in evolutionary systems. In: Checkland, P., Kiss, I. (eds.) Problems of Constancy and Change-The Complementarity of Systems Approaches to Complexity, Proc. of 31st Annual Meeting Int'l Soc. for General System Research, Budapest, vol. 2, pp. 1025-1033 (1987)
[4]
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159-195 (2001)
[5]
Auger, A., Hansen, N.: Reconsidering the progress rate theory for evolution strategies in finite dimensions. In: ACM Press (ed.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2006), pp. 445-452 (2006)
[6]
Arnold, D.V.: Optimal weighted recombination. In: Foundations of Genetic Algorithms, vol. 8, pp. 215-237. Springer, Heidelberg (2005)
[7]
Jebalia, M., Auger, A., Liardet, P.: Log-linear convergence and optimal bounds for the (1+1)- ES. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 207-218. Springer, Heidelberg (2008)
[8]
Teytaud, F., Teytaud, O.: On the parallel speed-up of Estimation of Multivariate Normal Algorithm and Evolution Strategies. In: Proceedings of EvoStar 2009, pp. 655-664 (2009)
[9]
Teytaud, F.: A new selection ratio for large population sizes. In: Proceedings of EvoStar 2010 (2010)
[10]
Bienvenüe, A., Francois, O.: Global convergence for evolution strategies in spherical problems: some simple proofs and difficulties. Th. Comp. Sc. 306(1-3), 269-289 (2003)
[11]
Jebalia, M., Auger, A., Hansen, N.: Log-linear convergence and divergence of the scaleinvariant (1+1)-ES in noisy environments. Algorithmica (to appear 2010)
[12]
Jebalia, M., Auger, A.: Log-linear Convergence of the Scale-invariant (µ/µw, λ)-ES and Optimal µ for Intermediate Recombination for Large Population Sizes. Research Report no=7275, INRIA (2010)
[13]
Auger, A.: Convergence results for (1,λ)-SA-ES using the theory of ϕ-irreducible markov chains. Theoretical Computer Science 334(1-3), 35-69 (2005)
[14]
Beyer, H.-G.: The Theory of Evolution Strategies. Nat. Comp. Series. Springer, Heidelberg (2001)
[15]
Beyer, H.-G., Sendhoff, B.: Covariance Matrix Adaptation revisited - The CMSA Evolution Strategy. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 123-132. Springer, Heidelberg (2008)
[16]
Teytaud, O., Fournier, H.: Lower Bounds for Evolution Strategies Using VC-dimension. In: Rudolph, G., et al. (eds.) Proceedings of PPSN X, pp. 102-111. Springer, Heidelberg (2008)
[17]
Beyer, H.-G.: Toward a Theory of Evolution Strategies: On the Benefits of Sex - the (µ/µ,λ) Theory. Evolutionary Computation 3(1), 81-111 (1995)

Cited By

View all
  • (2018)Analysis of evolution strategies with the optimal weighted recombinationProceedings of the Genetic and Evolutionary Computation Conference10.1145/3205455.3205632(809-816)Online publication date: 2-Jul-2018
  • (2017)Information-geometric optimization algorithmsThe Journal of Machine Learning Research10.5555/3122009.312202718:1(564-628)Online publication date: 1-Jan-2017
  1. Log-linear convergence of the scale-invariant (µ/µw, λ)-ES and optimal µ for intermediate recombination for large population sizes

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        PPSN'10: Proceedings of the 11th international conference on Parallel problem solving from nature: Part I
        September 2010
        741 pages
        ISBN:3642158439
        • Editors:
        • Robert Schaefer,
        • Carlos Cotta,
        • Joanna Kołodziej,
        • Günter Rudolph

        Sponsors

        • Hewlett-Packard Polska
        • Microsoft: Microsoft
        • Intel: Intel

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 11 September 2010

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 13 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2018)Analysis of evolution strategies with the optimal weighted recombinationProceedings of the Genetic and Evolutionary Computation Conference10.1145/3205455.3205632(809-816)Online publication date: 2-Jul-2018
        • (2017)Information-geometric optimization algorithmsThe Journal of Machine Learning Research10.5555/3122009.312202718:1(564-628)Online publication date: 1-Jan-2017

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media