Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Global convergence for evolution strategies in spherical problems

Published: 05 September 2003 Publication History

Abstract

This paper presents simple proofs for the global convergence of evolution strategies in spherical problems. We investigate convergence properties for both adaptive and self-adaptive strategies. Regarding adaptive strategies, the convergence rates are computed explicitly and compared with the results obtained in the so-called “rate-of-progress” theory. Regarding self-adaptive strategies, the computation is conditional to the knowledge of a specific induced Markov chain. An explicit example of chaotic behavior illustrates the complexity in dealing with such chains. In addition to these proofs, this work outlines a number of difficulties in dealing with evolution strategies.

References

[1]
T. Bäck, Oxford University Press, New York, 1996.
[2]
T. Bäck, H.P. Schwefel, An overview of evolutionary algorithms for parameters optimization, Evol. Comput., 1 (1993) 1-24.
[3]
H.-G. Beyer, Toward a theory of evolution strategies, Evol. Comput., 1 (1993) 165-188.
[4]
H.-G. Beyer, Toward a theory of evolution strategies, Evol. Comput., 3 (1996) 311-347.
[5]
H.-G. Beyer, Springer, Heidelberg, 2001.
[6]
A.E. Eiben, R. Hinterding, Z. Michialewicz, Parameter control in evolutionary algorithms, IEEE Trans. Evol. Comput., 3 (1999) 124-141.
[7]
J. Janssen, Les processus (J¿X), Cahiers Centre Études Rech. Opér., 11 (1969) 181-214.
[8]
S. Meyn, R. Tweedie, Markov Chains and Stability Analysis, Springer, New York, 1994.
[9]
C.P. Robert, G. Casella, Monte-Carlo Markov Chains, Springer, New York, 1999.
[10]
G. Rudolph, Kovac, Hamburg, 1997.
[11]
G. Rudolph, Finite Markov chain results in evolutionary computation: a tour d'horizon, Fund. Inform., 35 (1998) 1-22.
[12]
D. Ruelle, Cambridge University Press, Cambridge, 1987.
[13]
H.P. Schwefel, Wiley, New York, 1995.
[14]
G. Yin, G. Rudolph, H.-P. Schwefel, Establishing connections between evolutionary algorithms and stochastic approximation, Informatica, 6 (1995) 93-116.
[15]
G. Yin, G. Rudolph, H.-P. Schwefel, Analyzing (1,¿) evolution strategy via stochastic approximation methods, Evol. Comput., 3 (1996) 473-489.

Cited By

View all
  • (2023)Theory of (1+1) ES on SPHERE RevisitedIEEE Transactions on Evolutionary Computation10.1109/TEVC.2022.321752427:4(938-948)Online publication date: 1-Aug-2023
  • (2010)Bandit-based estimation of distribution algorithms for noisy optimizationProceedings of the 4th international conference on Learning and intelligent optimization10.5555/1893659.1893668(97-110)Online publication date: 18-Jan-2010
  • (2010)Log-linear convergence of the scale-invariant (µ/µw, λ)-ES and optimal µ for intermediate recombination for large population sizesProceedings of the 11th international conference on Parallel problem solving from nature: Part I10.5555/1885031.1885038(52-62)Online publication date: 11-Sep-2010
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 306, Issue 1
September 2003
544 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 05 September 2003

Author Tags

  1. Evolution strategies
  2. Global convergence
  3. Markov chains

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Theory of (1+1) ES on SPHERE RevisitedIEEE Transactions on Evolutionary Computation10.1109/TEVC.2022.321752427:4(938-948)Online publication date: 1-Aug-2023
  • (2010)Bandit-based estimation of distribution algorithms for noisy optimizationProceedings of the 4th international conference on Learning and intelligent optimization10.5555/1893659.1893668(97-110)Online publication date: 18-Jan-2010
  • (2010)Log-linear convergence of the scale-invariant (µ/µw, λ)-ES and optimal µ for intermediate recombination for large population sizesProceedings of the 11th international conference on Parallel problem solving from nature: Part I10.5555/1885031.1885038(52-62)Online publication date: 11-Sep-2010
  • (2010)Theoretical analysis of evolutionary computation on continuously differentiable functionsProceedings of the 12th annual conference on Genetic and evolutionary computation10.1145/1830483.1830742(1401-1408)Online publication date: 7-Jul-2010
  • (2008)Convergence Analysis of Evolution Strategies with Random Numbers of OffspringProceedings of the 10th International Conference on Parallel Problem Solving from Nature --- PPSN X - Volume 519910.5555/2951659.2951663(21-30)Online publication date: 13-Sep-2008
  • (2007)Log-linear convergence and optimal bounds for the (1 + 1)-ESProceedings of the Evolution artificielle, 8th international conference on Artificial evolution10.5555/1793671.1793693(207-218)Online publication date: 29-Oct-2007
  • (2007)Conditioning, halting criteria and choosing λProceedings of the Evolution artificielle, 8th international conference on Artificial evolution10.5555/1793671.1793692(196-206)Online publication date: 29-Oct-2007
  • (2007)Mutative self-adaptation on the sharp and parabolic ridgeProceedings of the 9th international conference on Foundations of genetic algorithms10.5555/1757524.1757529(70-96)Online publication date: 8-Jan-2007
  • (2006)Reconsidering the progress rate theory for evolution strategies in finite dimensionsProceedings of the 8th annual conference on Genetic and evolutionary computation10.1145/1143997.1144081(445-452)Online publication date: 8-Jul-2006
  • (2005)Convergence results for the (1, λ)-SA-ES using the theory of ϕ-irreducible Markov chainsTheoretical Computer Science10.1016/j.tcs.2004.11.017334:1-3(35-69)Online publication date: 11-Apr-2005
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media