Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1893859.1893867guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Combining logics in simple type theory

Published: 16 August 2010 Publication History

Abstract

Simple type theory is suited as framework for combining classical and non-classical logics. This claim is based on the observation that various prominent logics, including (quantified) multimodal logics and intuitionistic logics, can be elegantly embedded in simple type theory. Furthermore, simple type theory is sufficiently expressive to model combinations of embedded logics and it has a well understood semantics. Off-the-shelf reasoning systems for simple type theory exist that can be uniformly employed for reasoning within and about combinations of logics. Combinations of modal logics and other logics are particularly relevant for multi-agent systems.

References

[1]
Andrews, P.B.: General models and extensionality. Journal of Symbolic Logic 37, 395-397 (1972).
[2]
Andrews, P.B.: General models, descriptions, and choice in type theory. Journal of Symbolic Logic 37, 385-394 (1972).
[3]
Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Kluwer Academic Publishers, Dordrecht (2002).
[4]
Andrews, P.B., Brown, C.E.: TPS: A hybrid automatic-interactive system for developing proofs. Journal of Applied Logic 4(4), 367-395 (2006).
[5]
Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. In: Giesl, J., Haehnle, R. (eds.) IJCAR 2010 - 5th International Joint Conference on Automated Reasoning, Edinburgh, UK. LNCS (LNAI). Springer, Heidelberg (2010).
[6]
Baldoni, M.: Normal Multimodal Logics: Automatic Deduction and Logic Programming Extension. PhD thesis, Universita degli studi di Torino (1998).
[7]
Benzmüller, C.: Automating access control logic in simple type theory with LEO-II. In: Gritzalis, D., López, J. (eds.) Proceedings of 24th IFIP TC 11 International Information Security Conference, SEC 2009, Emerging Challenges for Security, Privacy and Trust, Pafos, Cyprus, May 18-20. IFIP, vol. 297, pp. 387-398. Springer, Heidelberg (2009).
[8]
Benzmüller, C., Brown, C.E., Kohlhase, M.: Higher order semantics and extensionality. Journal of Symbolic Logic 69, 1027-1088 (2004).
[9]
Benzmüller, C., Paulson, L.: Exploring Properties of Normal Multimodal Logics in Simple Type Theory with LEO-II. In: Festschrift in Honor of Peter B. Andrews on His 70th Birthday. Studies in Logic, Mathematical Logic and Foundations. College Publications (2008).
[10]
Benzmüller, C., Paulson, L.C.: Quantified Multimodal Logics in Simple Type Theory. SEKI Report SR-2009-02, SEKI Publications, DFKI Bremen GmbH, Safe and Secure Cognitive Systems, Cartesium, Enrique Schmidt Str. 5, D-28359 Bremen, Germany (2009), ISSN 1437-4447, http://arxiv.org/abs/0905.2435
[11]
Benzmüller, C., Paulson, L.C.: Multimodal and intuitionistic logics in simple type theory. The Logic Journal of the IGPL (2010).
[12]
Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II -- A Cooperative Automatic Theorem Prover for Higher-Order Logic. In: Baumgartner, P., Armando, A., Gilles, D. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162-170. Springer, Heidelberg (2008).
[13]
Benzmüller, C., Pease, A.: Progress in automating higher-order ontology reasoning. In: Konev, B., Schmidt, R., Schulz, S. (eds.) Workshop on Practical Aspects of Automated Reasoning (PAAR 2010), Edinburgh, UK, July 14. CEUR Workshop Proceedings (2010).
[14]
Benzmüller, C., Pease, A.: Reasoning with embedded formulas and modalities in SUMO. In: Bundy, A., Lehmann, J., Qi, G., Varzinczak, I.J. (eds.) The ECAI 2010 Workshop on Automated Reasoning about Context and Ontology Evolution (ARCOE 2010), Lisbon, Portugal, August 16-17 (2010).
[15]
Benzmüller, C., Rabe, F., Sutcliffe, G.: THF0 -- The Core TPTP Language for Classical Higher-Order Logic. In: Baumgartner, P., Armando, A., Gilles, D. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491-506. Springer, Heidelberg (2008).
[16]
Blackburn, P., Marx, M.: Tableaux for quantified hybrid logic. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 38-52. Springer, Heidelberg (2002).
[17]
Braüner, T.: Natural deduction for first-order hybrid logic. Journal of Logic, Language and Information 14(2), 173-198 (2005).
[18]
Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic 5, 56-68 (1940).
[19]
Fitting, M.: Interpolation for first order S5. Journal of Symbolic Logic 67(2), 621- 634 (2002).
[20]
Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal logics: theory and applications. Studies in Logic, vol. 148. Elsevier Science, Amsterdam (2003).
[21]
Garg, D., Abadi, M.: A Modal Deconstruction of Access Control Logics. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 216-230. Springer, Heidelberg (2008).
[22]
Garson, J.: Modal logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Winter 2009).
[23]
Gödel, K.: Eine interpretation des intuitionistischen aussagenkalküls. Ergebnisse eines Mathematischen Kolloquiums 8, 39-40 (1933); Also published in Gödel {24}, pp. 296-302.
[24]
Gödel, K.: Collected Works, vol. I. Oxford University Press, Oxford (1986).
[25]
Goldblatt, R.: Logics of Time and Computation. Center for the Study of Language and Information - Lecture Notes, vol. 7. Leland Stanford Junior University (1992).
[26]
Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic 15, 81-91 (1950).
[27]
Kaminski, M., Smolka, G.: Terminating tableau systems for hybrid logic with difference and converse. Journal of Logic, Language and Information 18(4), 437-464 (2009).
[28]
McKinsey, J.C.C., Tarski, A.: Some theorems about the sentential calculi of lewis and heyting. Journal of Symbolic Logic 13, 1-15 (1948).
[29]
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002).
[30]
Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings 3rd International Conference on Knowledge Representation and Reasoning, pp. 165-176 (1992).
[31]
Segerberg, K.: Two-dimensional modal logic. Journal of Philosophical Logic 2(1), 77-96 (1973).
[32]
Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 6-22. Springer, Heidelberg (2007).
[33]
Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reasoning 43(4), 337-362 (2009).
[34]
Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. Journal of Formalized Reasoning 3(1), 1-27 (2010).
[35]
Sutcliffe, G., Benzmüller, C., Brown, C., Theiss, F.: Progress in the development of automated theorem proving for higher-order logic. In: Schmidt, R.A. (ed.) Automated Deduction - CADE-22. LNCS, vol. 5663, pp. 116-130. Springer, Heidelberg (2009).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
CLIMA'10: Proceedings of the 11th international conference on Computational logic in multi-agent systems
August 2010
256 pages
ISBN:3642149766
  • Editors:
  • Jürgen Dix,
  • João Leite,
  • Guido Governatori,
  • Wojtek Jamroga

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 16 August 2010

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media