Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1986659.1986666guidebooksArticle/Chapter ViewAbstractPublication PagesBookacm-pubtype
chapter

Verifying the modal logic cube is an easy task: for higher-order automated reasoners

Published: 01 January 2010 Publication History

Abstract

Prominent logics, including quantified multimodal logics, can be elegantly embedded in simple type theory (classical higher-order logic). Furthermore, off-the-shelf reasoning systems for simple type type theory exist that can be uniformly employed for reasoning within and about embedded logics. In this paper we focus on reasoning about modal logics and exploit our framework for the automated verification of inclusion and equivalence relations between them. Related work has applied first-order automated theorem provers for the task. Our solution achieves significant improvements, most notably, with respect to elegance and simplicity of the problem encodings as well as with respect to automation performance.

References

[1]
Andrews, P.B., Brown, C.: TPS: A Hybrid Automatic-Interactive System for Developing Proofs. Journal of Applied Logic 4(4), 367-395 (2006).
[2]
Andrews, P.B.: General models and extensionality. Journal of Symbolic Logic 37, 395-397 (1972).
[3]
Andrews, P.B.: General models, descriptions, and choice in type theory. Journal of Symbolic Logic 37, 385-394 (1972).
[4]
Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Kluwer Academic Publishers, Dordrecht (2002).
[5]
Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. In: Giesl, J., Hähnle, R. (eds.) Automated Reasoning. LNCS (LNAI), vol. 6173, pp. 76-90. Springer, Heidelberg (2010).
[6]
Benzmüller, C.: Combining logics in simple type theory. In: The 11th International Workshop on Computational Logic in Multi-Agent Systems, Lisbon, Portugal. Lecture Notes in Artifical Intelligence, Springer, Heidelberg (2010).
[7]
Benzmüller, C., Brown, C.E., Kohlhase, M.: Higher order semantics and extensionality. Journal of Symbolic Logic 69, 1027-1088 (2004).
[8]
C. Benzmüller, L.C. Paulson. Quantified Multimodal Logics in Simple Type Theory. SEKI Report SR-2009-02 (ISSN 1437-4447). SEKI Publications, DFKI Bremen GmbH, Safe and Secure Cognitive Systems, Cartesium, Enrique Schmidt Str. 5, D-28359 Bremen, Germany (2009), http://arxiv.org/abs/0905.2435
[9]
Benzmüller, C., Paulson, L.C.: Multimodal and intuitionistic logics in simple type theory. The Logic Journal of the IGPL (2010).
[10]
Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II -- A Cooperative Automatic Theorem Prover for Higher-Order Logic. In: Baumgartner, P., Armando, A., Gilles, D. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162- 170. Springer, Heidelberg (2008).
[11]
Benzmüller, C., Rabe, F., Sutcliffe, G.: THF0 -- The Core TPTP Language for Classical Higher-Order Logic. In: Baumgartner, P., Armando, A., Gilles, D. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491-506. Springer, Heidelberg (2008).
[12]
Blackburn, P., Marx, M.: Tableaux for quantified hybrid logic. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 38-52. Springer, Heidelberg (2002).
[13]
Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131-146. Springer, Heidelberg (2010).
[14]
Braüner, T.: Natural deduction for first-order hybrid logic. Journal of Logic, Language and Information 14(2), 173-198 (2005).
[15]
Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic 5, 56-68 (1940).
[16]
Fitting, M.: Interpolation for first order S5. Journal of Symbolic Logic 67(2), 621- 634 (2002).
[17]
Garson, J.: Modal logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter 2009 edition (2009).
[18]
Goldblatt, R.: Logics of Time and Computation, 2nd edn. Lecture Notes, vol. 7. Center for the Study of Language and Information, Stanford (1992).
[19]
Halleck, J.: John Halleck's Logic Systems, http://www.cc.utah.edu/~nahaj/logic/structures/systems/index.html
[20]
Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic 15, 81-91 (1950).
[21]
Kaminski, M., Smolka, G.: Terminating tableau systems for hybrid logic with difference and converse. Journal of Logic, Language and Information 18(4), 437-464 (2009).
[22]
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002).
[23]
Rabe, F., Pudlak, P., Sutcliffe, G., Shen, W.: Solving the $100 Modal Logic Challenge. Journal of Applied Logic (2008) (page to appear).
[24]
Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3), 111-126 (2002).
[25]
Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: Diekert, V., Volkov, M., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 7-23. Springer, Heidelberg (2007).
[26]
Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reasoning 43(4), 337-362 (2009).
[27]
Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. Journal of Formalized Reasoning 3(1), 1-27 (2010).
[28]
Weber, T.: SAT-Based Finite Model Generation for Higher-Order Logic. Ph.D. thesis, Dept. of Informatics, T.U. München (2008).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide books
Verification, induction termination analysis: festschrift for Christoph Walther on the occasion of his 60th birthday
January 2010
143 pages
ISBN:3642171710
  • Editors:
  • Simon Siegler,
  • Nathan Wasser

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 January 2010

Qualifiers

  • Chapter

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media