Analysis of power-performance for ultra-thin-body GeOI logic circuits
Pages 115 - 120
Abstract
This work analyzes the power-performance of the emerging Ultra-Thin-Body (UTB) GeOI devices for logic circuit applications. The impacts of temperature and Vdd scaling on the leakage/delay are studied. Compared with the subthreshold leakage dominated SOI devices/circuits, the band-to-band tunneling dominated leakage currents of GeOI devices/circuits show less sensitivity to temperature. At 300oK and comparable delay, GeOI inverter with smaller band-gap shows larger leakage than the SOI inverter at Vdd = 1.0V, while exhibits lower leakage than the SOI inverter at Vdd = 0.8V. At 400oK, GeOI inverter shows both lower leakage and lower delay at Vdd = 0.6~1.0V compared with the SOI counterpart, due to the weaker temperature dependence of band-to-band tunneling leakage compared with subthreshold leakage. Compared with the SOI Two-Way NAND and NOR, the GeOI Two-Way NAND and NOR show smaller leakage currents at Vdd = 0.5V or 400oK as the band-to-band tunneling leakage is less sensitive to temperature compared with the subthreshold leakage. Compared with the GeOI domino gate at 400oK, the SOI domino gate shows 5 times degradation in the worst-case noise (dynamic node voltage droop) and 1.4 times increase in the worst-case delay. The GeOI latch leakages are smaller than the SOI counterparts at 300oK (Vdd < 0.8V) and 400oK (Vdd = 0.5~1.0V).
References
[1]
D. Kuzum, T. Krishnamohan, A. Nainani, Y. Sun, P. A. Pianetta, H. S-. P. Wong, and K. C. Saraswat, "Experimental Demonstration of High Mobility Ge NMOS," IEDM Tech. Dig., pp. 453--456, 2009.
[2]
C. H. Lee, T. Nishimura, N. Saido, K. Nagashio, K. Kita, and A. Toriumi, "Record-high Electron Mobility in Ge n-MOSFETs exceeding Si Universality," IEDM Tech. Dig., pp. 457--460, 2009.
[3]
P. Zimmerman, G. Nicholas, B. D. Jaeger, B. Kaczer, A. Stesmans, L. Ragnarsson, D. P. Brunco, F. E. Leys, M. Caymax, G. Winderickx, K. Opsomer, M. Meuris, and M. M. Heyns, "High performance Ge pMOS devices using a Si-compatible process flow," IEDM Tech. Dig., pp. 655--658, 2006.
[4]
T. Yamamoto, Y. Yamashita, M. Harada, N. Taoka, K. Ikeda, K. Suzuki, O. Kiso, N. Sugiyama, and S. Takagi, "High performance 60nm Gate Length Germanium p-MOSFETs with Ni Germanide Metal Source/Drain," IEDM Tech. Dig., pp. 1041--1043, 2007.
[5]
E. Batail, S. Monfray, C. Tabone, O. Kermarrec, JF. Damlencourt, P. Gautier, G. Rabille, C. Arvet, N. Loubet, Y. Campidelli, JM. Hartmann, A. Pouydebasque, V. Delaye, C. Le Royer, G. Ghibaudo, T. Skotnicki, and S. Deleonibus, "Localized Ultra-Thin GeOI: an innovative approach to Germanium channel MOSFETs on Bulk Si substrates," IEDM Tech. Dig., pp. 397--400, 2008.
[6]
C. Royer, A. Pouydebasque, K. Romanjek, V. Barral, M. Vinet, J. Hartmann, E. Augendre, H. Grampeix, L. Lachal, C. Tabone, B. Previtali, R. Truche, and F. Alain, "Sub-100nm High-K Metal Gate GeOI pMOSFETs performance: Impact of the Ge channel Orientation and of the Source Injection Velocity," Symp. on VLSI Tech., pp. 145--146, 2009.
[7]
V. P.-H. Hu, Y.-S. Wu, and P. Su, "Investigation of electrostatic integrity for ultrathin-body Germanium-On-Nothing MOSFET," IEEE Trans. on Nanotechnology, vol. 10, no. 2, pp. 325--330, 2011.
[8]
L. Hutin, C. Royer, J. Damlencourt, J. Hartmann, H. Grampeix, V. Mazzocchi, C. Tabone, B. Previtali, A. Pouydebasque, M. Vinet, and O. Faynot, "GeOI pMOSFETs Scaled Down to 30-nm Gate Length With Record Off-State Current," IEEE Electron Device Lett., vol. 31, no. 3, pp. 234--236, 2010.
[9]
X. An, R. Huang, X. Zhang, and Y. Wang, "Comparison of device performance and scaling capability of thin-body GOI and SOI MOSFETs," Semicond. Sci. Technol., vol. 20, pp. 1034--1038, 2005.
[10]
S. E. Laux, "A Simulation Study of the Switching Times of 22- and 17-nm Gate-Length SOI nFETs on High Mobility Substrates and Si," IEEE Trans, Electron Devices, vol. 54, no. 9, pp. 2304--2320, 2007.
[11]
E. Batail, S. Monfray, A. Pouydebasque, G. Ghibaudo, and T. Skotnicki, "Impact of Scaling on Electrostatics of Germanium-channel MOSFET-analytical study," Silicon Nanoelectronics Workshop, 2008.
[12]
Y.-S. Wu, H.-Y. Hsieh, V. P.-H. Hu, and P. Su, "Impact of Quantum Confinement on Short-Channel Effects for Ultra-Thin-Body Germanium-On-Insulator MOSFETs," IEEE Electron Device Lett., vol. 32, no. 1, pp. 18--20, 2011
[13]
Sentaurus TCAD, C2009-06 Manual.
[14]
A. Schenk, "Rigorous theory and simplified model of the band-to-band tunneling in silicon," Solid State Electron., vol. 36, no. 1, pp. 19--34, 1993.
[15]
Atlas User's Manual, SILVACO, Santa Clara, CA, 2008.
[16]
K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, "Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits," Proceedings of the IEEE, vol. 91, no. 2, pp. 305--327, 2003.
[17]
G. W. Ludwig, and R. L. Watters, "Drift and Conductivity Mobility in Silicon," Physical Review, vol. 101, Mar., pp. 1699--1701, 1956.
[18]
F. J. Morin, "Lattice Scattering Mobility in Germanium," Physical Review, vol. 93, Jan., pp. 62--63, 1954.
[19]
S. Narendra, V. De, S. Borkar, D. Antoniadis, and A. Chandrakasan, "Full-chip subthreshold leakage power prediction and reduction techniques for sub 0.18um CMOS," IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 501--510, 2004.
[20]
M. Johnson, D. Somasekhar, L.-Y. Chiou, and K. Roy, "Leakage control with efficient use of transistor stacks in single threshold CMOS," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 10, no. 1, pp. 1--5, 2002.
[21]
R. H. Krambeck, C. M. Lee, and H.-F. S. Law, "High-speed compact circuits with CMOS," IEEE J. Solid-State Circuits, vol. SC-17, no. 3, pp. 614--619, 1982.
[22]
A. Alvandpour, R. Krishnamurthy, K. Soumyanath, and S. Borkar, "A Conditional Keeper Technique for Sub-0.13u Wide Dynamic Gates," Symp. on VLSI Circuits., pp. 29--30, 2001.
[23]
S. Tang, S. Hsu, Y. Ye, J. Tschanz, D. Somasekhar, S. Narendra, S.-L. Lu, R. Krishnamurthy, and V. De, "A Leakage-Tolerant Dynamic Register File Using Leakage Bypass with Stack Forcing (LBSF) and Source Follower NMOS (SFN) Techniques," Symp. on VLSI Circuits., pp. 320--321, 2002.
[24]
Y. Lih, N. Tzartzanis, and W. Walker, "A Leakage Current Replica Keeper for Dynamic Circuits," IEEE ISSCC, 24.4, 2006.
[25]
B. Curran, P. Camporese, S. Carey, Y. Chan, Y.-H. Chan, R. Clemen, R. Crea, D. Hoffman, T. Koprowski, M. Mayo, T. McPherson, G. Northrop, L. Sigal, H. Smith, F. Tanzi, and P. Williams, "A 1.1GHz First 64b Generation Z900 Microprocessor," IEEE ISSCC, 15.5, 2001.
[26]
J. Clabes, J. Friedrich, M. Sweet, J. DiLullo, S. Chu, D. Plass, J. Dawson, P. Muench, L. Powell, M. Floyd, B. Sinharoy, M. Lee, M. Goulet, J. Wagoner, N. Schwartz, S. Runyon, G. Gorman, P. Restle, R. Kalla, J. McGill, and S. Dodson, "Design and Implementation of the POWER5TM Microprocessor," IEEE ISSCC, 3.1, 2004.
Recommendations
Comments
Information & Contributors
Information
Published In

August 2011
434 pages
ISBN:9781612846606
- General Chairs:
- Naehyuck Chang,
- Hiroshi Nakamura,
- Koji Inoue,
- Program Chairs:
- Kenichi Osada,
- Massimo Poncino
Sponsors
Publisher
IEEE Press
Publication History
Published: 01 August 2011
Check for updates
Author Tags
Qualifiers
- Research-article
Conference
ISLPED'11
Sponsor:
ISLPED'11: International Symposium on Low Power Electronics and Design
August 1 - 3, 2011
Fukuoka, Japan
Acceptance Rates
Overall Acceptance Rate 398 of 1,159 submissions, 34%
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 75Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 03 Mar 2025
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in