Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3141475.3141484acmotherconferencesArticle/Chapter ViewAbstractPublication PagesgiConference Proceedingsconference-collections
research-article

Real-time Rendering with Compressed Animated Light Fields

Published: 06 January 2017 Publication History

Abstract

We propose an end-to-end solution for presenting movie quality animated graphics to the user while still allowing the sense of presence afforded by free viewpoint head motion. By transforming offline rendered movie content into a novel immersive representation, we display the content in real-time according to the tracked head pose. For each frame, we generate a set of cubemap images per frame (colors and depths) using a sparse set of of cameras placed in the vicinity of the potential viewer locations. The cameras are placed with an optimization process so that the rendered data maximise coverage with minimum redundancy, depending on the lighting environment complexity. We compress the colors and depths separately, introducing an integrated spatial and temporal scheme tailored to high performance on GPUs for Virtual Reality applications. We detail a real-time rendering algorithm using multi-view ray casting and view dependent decompression. Compression rates of 150:1 and greater are demonstrated with quantitative analysis of image reconstruction quality and performance.

References

[1]
NVIDIA VIDEO CODEC SDK. https://developer.nvidia. com/nvidia-video-codec-sdk.
[2]
RGTC Texture Compression. https://www.khronos. org/registry/OpenGL/extensions/ARB/ARB_texture_ compression_bptc.txt.
[3]
RGTC Texture Compression. https://www.khronos. org/registry/OpenGL/extensions/ARB/ARB_texture_ compression_rgtc.txt.
[4]
E. H. Adelson and J. R. Bergen. The plenoptic function and the elements of early vision. Vision and Modeling Group, Media Laboratory, Massachusetts Institute of Technology, 1991.
[5]
G. v. d. Bergen. Efficient collision detection of complex deformable models using aabb trees. Journal of Graphics Tools, 2(4):1–13, 1997.
[6]
H. Bowles, K. Mitchell, R. W. Sumner, J. Moore, and M. Gross. Iterative image warping. In Computer graphics forum, volume 31, pages 237–246. Wiley Online Library, 2012.
[7]
A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese, H. Hoppe, A. Kirk, and S. Sullivan. High-quality streamable freeviewpoint video. ACM Transactions on Graphics (TOG), 34(4):69, 2015.
[8]
L. Dabala, M. Ziegler, P. Didyk, F. Zilly, J. Keinert, K. Myszkowski, H.-P. Seidel, P. Rokita, and T. Ritschel. Efficient Multi-image Correspondences for On-line Light Field Video Processing. Computer Graphics Forum, 2016.
[9]
S. Donow. Light probe selection algorithms for real-time rendering of light fields, 2016.
[10]
S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pages 43–54. ACM, 1996.
[11]
J. Hooker. Volumetric Global Illumination at Treyarch. In Advances in Real-Time Rendering Part I Course, SIGGRAPH ’16, New York, NY, USA, 2016. ACM.
[12]
K. I. Iourcha, K. S. Nayak, and Z. Hong. System and method for fixed-rate block-based image compression with inferred pixel values, Sept. 21 1999. US Patent 5,956,431.
[13]
Y. J. Jeong, H. S. Chang, Y. H. Cho, D. Nam, and C.-C. J. Kuo. Efficient direct light field rendering for autostereoscopic 3d displays. SID, 2015.
[14]
J. T. Kajiya. The rendering equation. In ACM Siggraph Computer Graphics, volume 20, pages 143–150. ACM, 1986.
[15]
C. Kim, K. Subr, K. Mitchell, A. Sorkine-Hornung, and M. Gross. Online view sampling for estimating depth from light fields. In Image Processing (ICIP), 2015 IEEE International Conference on, pages 1155–1159. IEEE, 2015.
[16]
C. Kim, H. Zimmer, Y. Pritch, A. Sorkine-Hornung, and M. H. Gross. Scene reconstruction from high spatio-angular resolution light fields. ACM Trans. Graph., 32(4):73–1, 2013.
[17]
B. Koniaris, I. Huerta, M. Kosek, K. Darragh, C. Malleson, J. Jamrozy, N. Swafford, J. Guitian, B. Moon, A. Israr, S. Andrews, and K. Mitchell. Iridium: immersive rendered interactive deep media. In ACM SIGGRAPH 2016 VR Village, page 11. ACM, 2016.
[18]
K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev, S. Grizan, A. Wolman, and J. Flinn. Outatime: Using speculation to enable low-latency continuous interaction for mobile cloud gaming. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, pages 151–165. ACM, 2015.
[19]
M. Levoy and P. Hanrahan. Light field rendering. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pages 31–42. ACM, 1996.
[20]
M. McGuire, M. Mara, D. Nowrouzezahrai, and D. Luebke. Realtime global illumination using precomputed light field probes. In Proceedings of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, page 2. ACM, 2017.
[21]
P. Merkle, Y. Morvan, A. Smolic, D. Farin, K. Mueller, P. de With, and T. Wiegand. The effects of multiview depth video compression on multiview rendering. Signal Processing: Image Communication, 24(1):73–88, 2009.
[22]
P. Merkle, K. Muller, A. Smolic, and T. Wiegand. Efficient compression of multi-view video exploiting inter-view dependencies based on h. 264/mpeg4-avc. In 2006 IEEE International Conference on Multimedia and Expo, pages 1717–1720. IEEE, 2006.
[23]
P. Merkle, A. Smolic, K. Muller, and T. Wiegand. Multi-view video plus depth representation and coding. In 2007 IEEE International Conference on Image Processing, volume 1, pages I–201. IEEE, 2007.
[24]
J. Nystad, A. Lassen, A. Pomianowski, S. Ellis, and T. Olson. Adaptive scalable texture compression. In Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on High-Performance Graphics, pages 105–114. Eurographics Association, 2012.
[25]
B. Reinert, J. Kopf, T. Ritschel, C. Eduardo, D. Chu, and H. Seidel. Proxy-guided image-based rendering for mobile devices. In Computer Graphics Forum: the international journal of the Eurographics Association, volume 35, 2016.
[26]
S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A comparison and evaluation of multi-view stereo reconstruction algorithms. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 1, pages 519–528. IEEE, 2006.
[27]
L. Szirmay-Kalos, B. Aszodi, I. Lazanyi, and M. Premecz. Approximate Ray-Tracing on the GPU with Distance Impostors. Computer Graphics Forum, 2005.
[28]
G. Valenzise, F. De Simone, P. Lauga, and F. Dufaux. Performance evaluation of objective quality metrics for hdr image compression. In SPIE Optical Engineering+ Applications, pages 92170C–92170C. International Society for Optics and Photonics, 2014.
[29]
A. Vlachos. Advanced vr rendering performance. Game Developers Conference 2016, 2016.

Cited By

View all
  • (2020)Post-Render Warp with Late Input Sampling Improves Aiming Under High Latency ConditionsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/34061873:2(1-18)Online publication date: 26-Aug-2020
  • (2019)RLFCProceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games10.1145/3306131.3317018(1-10)Online publication date: 21-May-2019
  • (2018)Standards-compliant HTTP adaptive streaming of static light fieldsProceedings of the 24th ACM Symposium on Virtual Reality Software and Technology10.1145/3281505.3281539(1-12)Online publication date: 28-Nov-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
GI '17: Proceedings of the 43rd Graphics Interface Conference
June 2017
239 pages
ISBN:9780994786821

Sponsors

  • The Canadian Human-Computer Communications Society / Société Canadienne du Dialogue Humaine Machine (CHCCS/SCDHM)
  • Microsoft: Microsoft
  • University of Alberta: University of Alberta

In-Cooperation

Publisher

Canadian Human-Computer Communications Society

Waterloo, Canada

Publication History

Published: 06 January 2017

Check for updates

Author Tags

  1. compression
  2. image-based rendering
  3. light field rendering
  4. multi-view

Qualifiers

  • Research-article

Acceptance Rates

GI '17 Paper Acceptance Rate 26 of 52 submissions, 50%;
Overall Acceptance Rate 206 of 508 submissions, 41%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2020)Post-Render Warp with Late Input Sampling Improves Aiming Under High Latency ConditionsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/34061873:2(1-18)Online publication date: 26-Aug-2020
  • (2019)RLFCProceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games10.1145/3306131.3317018(1-10)Online publication date: 21-May-2019
  • (2018)Standards-compliant HTTP adaptive streaming of static light fieldsProceedings of the 24th ACM Symposium on Virtual Reality Software and Technology10.1145/3281505.3281539(1-12)Online publication date: 28-Nov-2018
  • (2018)View-Region Optimized Image-Based Scene SimplificationProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/32333111:2(1-22)Online publication date: 24-Aug-2018
  • (2018)GPU-accelerated depth codec for real-time, high-quality light field reconstructionProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/32031931:1(1-15)Online publication date: 25-Jul-2018

View Options

Get Access

Login options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media