Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3367243.3367308guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Neighborhood-aware attentional representation for multilingual knowledge graphs

Published: 10 August 2019 Publication History

Abstract

Multilingual knowledge graphs constructed by entity alignment are the indispensable resources for numerous AI-related applications. Most existing entity alignment methods only use the triplet-based knowledge to find the aligned entities across multilingual knowledge graphs, they usually ignore the neighborhood subgraph knowledge of entities that implies more richer alignment information for aligning entities. In this paper, we incorporate neighborhood subgraph-level information of entities, and propose a neighborhood-aware attentional representation method NAEA for multilingual knowledge graphs. NAEA devises an attention mechanism to learn neighbor-level representation by aggregating neighbors' representations with a weighted combination. The attention mechanism enables entities not only capture different impacts of their neighbors on themselves, but also attend over their neighbors' feature representations with different importance. We evaluate our model on two real-world datasets DBP15K and DWY100K, and the experimental results show that the proposed model NAEA significantly and consistently outperforms state-of-the-art entity alignment models.

References

[1]
Steven P. Abney. Understanding the yarowsky algorithm. Computational Linguistics, 30(3):365-395, 2004.
[2]
Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard Cyganiak, and Sebastian Hellmann. Dbpedia A crystallization point for the web of data. J. Web Sem., 7(3):154-165, 2009.
[3]
A. Bordes, N. Usunier, and A. Garcia-Duran. Translating embeddings for modeling multirelational data. In Proceedinds of NIPS, pages 2787-2795, 2013.
[4]
Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo Zaniolo. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In Proceedinds of IJCAI, pages 1511-1517, 2017.
[5]
Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d knowledge graph embeddings. In AAAI, pages 1811-1818, 2018.
[6]
Alberto García-Durán, Antoine Bordes, and Nicolas Usunier. Composing relationships with translations. In EMNLP, pages 286-290, 2015.
[7]
G. Ji, S. He, L. Xu, K. Liu, and J. Zhao. Knowledge graph embedding via dynamic mapping matrix. In Proceedinds of ACL, pages 687-696, 2015.
[8]
Simon Lacoste-Julien, Konstantina Palla, Alex Davies, Gjergji Kasneci, Thore Graepel, and Zoubin Ghahramani. Sigma: simple greedy matching for aligning large knowledge bases. In KDD, pages 572-580, 2013.
[9]
Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and relation embeddings for knowledge graph completion. In Proceedinds of AAAI, pages 2181- 2187, 2015.
[10]
Yankai Lin, Zhiyuan Liu, Huan-Bo Luan, Maosong Sun, Siwei Rao, and Song Liu. Modeling relation paths for representation learning of knowledge bases. In EMNLP, pages 705-714, 2015.
[11]
Weiwei Liu, Ivor W. Tsang, and Klaus-Robert Müller. An easy-to-hard learning paradigm for multiple classes and multiple labels. Journal of Machine Learning Research, 18:94:1-94:38, 2017.
[12]
Weiwei Liu, Donna Xu, Ivor W. Tsang, and Wenjie Zhang. Metric learning for multi-output tasks. IEEE TPAMI, 41(2):408-422, 2019.
[13]
Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. Yago3: A knowledge base from multilingual wikipedias. In CIDR, 2015.
[14]
Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings of knowledge graphs. Computer Science, 2016.
[15]
B. Shi and T. Weninger. Proje: Embedding projection for knowledge graph completion. In AAAI, pages 1236-1242, 2017.
[16]
Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Reasoning with neural tensor networks for knowledge base completion. In NIPS, pages 926-934, 2013.
[17]
Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A large ontology from wikipedia and wordnet. J. Web Sem., 6(3):203-217, 2008.
[18]
Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. PARIS: probabilistic alignment of relations, instances, and schema. CoRR, abs/1111.7164, 2011.
[19]
Zequn Sun, Wei Hu, and Chengkai Li. Cross-lingual entity alignment via joint attribute-preserving embedding. In Proceedinds of ISWC, pages 628-644, 2017.
[20]
Zequn Sun, Wei Hu, Qingheng Zhang, and Yuzhong Qu. Bootstrapping entity alignment with knowledge graph embedding. In IJCAI, pages 4396-4402, 2018.
[21]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pages 6000-6010, 2017.
[22]
Denny Vrandecic. Wikidata: A new platform for collaborative data collection. In WWW, 2012.
[23]
Zhichun Wang, Juanzi Li, and Jie Tang. Boosting cross-lingual knowledge linking via concept annotation. In IJCAI, pages 2733-2739, 2013.
[24]
Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by translating on hyperplanes. In Proceedinds of AAAI, pages 1112-1119, 2014.
[25]
B. Yang, W. t. Yih, X. He, J. Gao, and L. Deng. Learning multi-relational semantics using neural-embedding models. In ICLR, 2015.
[26]
David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In ACL, pages 189-196, 1995.
[27]
Duo Zhang, Benjamin I. P. Rubinstein, and Jim Gemmell. Principled graph matching algorithms for integrating multiple data sources. IEEE TKDE., 27(10):2784-2796, 2015.
[28]
Xiaofei Zhou, Qiannan Zhu, Ping Liu, and Li Guo. Learning knowledge embeddings by combining limit-based scoring loss. In CIKM, pages 1009-1018, 2017.
[29]
Hao Zhu, Ruobing Xie, Zhiyuan Liu, and Maosong Sun. Iterative entity alignment via joint knowledge embeddings. In IJCAI, pages 4258-4264, 2017.
[30]
Qiannan Zhu, Xiaofei Zhou, Peng Zhang, and Yong Shi. A neural translating general hyperplane for knowledge graph embedding. J. Comput. Science, 30:108- 117, 2019.

Cited By

View all
  • (2024)Diverse Structure-Aware Relation Representation in Cross-Lingual Entity AlignmentACM Transactions on Knowledge Discovery from Data10.1145/363877818:4(1-23)Online publication date: 13-Feb-2024
  • (2022)LargeEAProceedings of the VLDB Endowment10.14778/3489496.348950415:2(237-245)Online publication date: 4-Feb-2022
  • (2022)A Computational Framework for Organizing and Querying Cultural Heritage ArchivesJournal on Computing and Cultural Heritage 10.1145/348584315:3(1-25)Online publication date: 18-Feb-2022
  • Show More Cited By
  1. Neighborhood-aware attentional representation for multilingual knowledge graphs

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    IJCAI'19: Proceedings of the 28th International Joint Conference on Artificial Intelligence
    August 2019
    6589 pages
    ISBN:9780999241141

    Sponsors

    • Sony: Sony Corporation
    • Huawei Technologies Co. Ltd.: Huawei Technologies Co. Ltd.
    • Baidu Research: Baidu Research
    • The International Joint Conferences on Artificial Intelligence, Inc. (IJCAI)
    • Lenovo: Lenovo

    Publisher

    AAAI Press

    Publication History

    Published: 10 August 2019

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 08 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Diverse Structure-Aware Relation Representation in Cross-Lingual Entity AlignmentACM Transactions on Knowledge Discovery from Data10.1145/363877818:4(1-23)Online publication date: 13-Feb-2024
    • (2022)LargeEAProceedings of the VLDB Endowment10.14778/3489496.348950415:2(237-245)Online publication date: 4-Feb-2022
    • (2022)A Computational Framework for Organizing and Querying Cultural Heritage ArchivesJournal on Computing and Cultural Heritage 10.1145/348584315:3(1-25)Online publication date: 18-Feb-2022
    • (2021)Unsupervised Adversarial Network Alignment with Reinforcement LearningACM Transactions on Knowledge Discovery from Data10.1145/347705016:3(1-29)Online publication date: 22-Oct-2021
    • (2021)Entity and Relation Matching Consensus for Entity AlignmentProceedings of the 30th ACM International Conference on Information & Knowledge Management10.1145/3459637.3482338(2331-2341)Online publication date: 26-Oct-2021
    • (2021)Differentially Private Federated Knowledge Graphs EmbeddingProceedings of the 30th ACM International Conference on Information & Knowledge Management10.1145/3459637.3482252(1416-1425)Online publication date: 26-Oct-2021
    • (2021)Are Negative Samples Necessary in Entity Alignment?Proceedings of the 30th ACM International Conference on Information & Knowledge Management10.1145/3459637.3482232(1263-1273)Online publication date: 26-Oct-2021

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media