Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3540261.3542382guideproceedingsArticle/Chapter ViewAbstractPublication PagesnipsConference Proceedingsconference-collections
research-article

Permuton-induced Chinese restaurant process

Published: 10 June 2024 Publication History

Abstract

This paper proposes the permuton-induced Chinese restaurant process (PCRP), a stochastic process on rectangular partitioning of a matrix. This distribution is suitable for use as a prior distribution in Bayesian nonparametric relational model to find hidden clusters in matrices and network data. Our main contribution is to introduce the notion of permutons into the well-known Chinese restaurant process (CRP) for sequence partitioning: a permuton is a probability measure on [0, 1] × [0, 1] and can be regarded as a geometric interpretation of the scaling limit of permutations. Specifically, we extend the model that the table order of CRPs has a random geometric arrangement on [0, 1] × [0, 1] drawn from the permuton. By analogy with the relationship between the stick-breaking process (SBP) and CRP for the infinite mixture model of a sequence, this model can be regarded as a multidimensional extension of CRP paired with the block-breaking process (BBP), which has been recently proposed as a multi-dimensional extension of SBP. While BBP always has an infinite number of redundant intermediate variables, PCRP can be composed of varying size intermediate variables in a data-driven manner depending on the size and quality of the observation data. Experiments show that PCRP can improve the prediction performance in relational data analysis by reducing the local optima and slow mixing problems compared with the conventional BNP models because the local transitions of PCRP in Markov chain Monte Carlo inference are more flexible than the previous models.

Supplementary Material

Additional material (3540261.3542382_supp.pdf)
Supplemental material.

References

[1]
http://snap.stanford.edu/data/wiki-Vote.html
[2]
http://snap.stanford.edu/data/ego-Facebook.html
[3]
http://snap.stanford.edu/data/ego-Twitter.html
[4]
http://snap.stanford.edu/data/soc-Epinions1.html
[5]
Ackerman, E., Barequet, G., Pinter, R.Y.: A bijection between permutations and floorplans, and its applications. Discrete Applied Mathematics 154(12), 1674–1684 (2006)
[6]
Adams, R.P., Jordan, M.I., Ghahramani, Z.: Tree-structured stick breaking for hierarchical data. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems. vol. 23. Curran Associates, Inc. (2010)
[7]
Airoldi, E.M., Costa, T.B., Chan, S.H.: Stochastic blockmodel approximation of a graphon: Theory andconsistent estimation. In: Advances in Neural Information Processing Systems (2013)
[8]
Aldous, D.J.: Representations for partially exchangeable arrays of random variables. Journal of Multivariate Analysis 11, 581–598 (1981)
[9]
Aldous, D.J.: Exchangeability and related topics. École d'Été St Flour, Lecture Notes in Mathematics 1117, 1–198 (1985)
[10]
Bassino, F., Bouvel, M., Feray, V., Gerin, L., Maazoun, M., Pierrot, A.: Universal limits of substitution-closed permutation classes. Journal of the European Mathematical Society 22(11), 3565–3639 (2019)
[11]
Bassino, F., Bouvel, M., Féray, V., Gerin, L., Pierrot, A.: The Brownian limit of separable permutations. The Annals of Probability 46(4), 2134—-2189 (2018)
[12]
Bassino, F., Bouvel, M., Féray, V., Gerin, L., Maazoun, M., Pierrot, A.: Scaling limits of permutation classes with a finite specification: a dichotomy. arXiv:1903.07522 (2019)
[13]
Baxter, G.: On fixed points of the composite of commuting functions. Proceedings of American Mathematical Society 15, 851–855 (1964)
[14]
Blei, D., Frazier, P.: Distance dependent Chinese restaurant processes. In: International Conference on Machine Learning (2010)
[15]
Blei, D., Frazier, P.: Distance dependent Chinese restaurant processes. Journal of Machine Learning Reseach 12, 2461–2488 (2011)
[16]
Blei, D.M., Jordan, M.I., Griffiths, T.L., Tenenbaum, J.B.: Hierarchical topic models and the nested Chinese restaurant process. pp. 17–24 (2003)
[17]
Blei, D.M., Griffiths, T.L., Jordan, M.I.: The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. J. ACM 57(2) (2010)
[18]
Borga, J., Maazoun, M.: Scaling and local limits of Baxter permutations and bipolar orientations through coalescent-walk processes. arXiv:2008.09086 (2020)
[19]
Caldas, J., Kaski, S.: Bayesian biclustering with the plaid model. In: 2008 IEEE Workshop on Machine Learning for Signal Processing. pp. 291–296 (2008)
[20]
Choi, D.S., Wolfe, P.J.: Co-clustering separately exchangeable network data. Annals of Statistics 42, 29–63 (2014)
[21]
Fan, X., Li, B., Sisson, S.A.: The binary space partitioning-tree process. In: International Conference on Artificial Intelligence and Statistics. pp. 1859–1867 (2018)
[22]
Fan, X., Li, B., Luo, L., Sisson, S.A.: Bayesian nonparametric space partitions: A survey. arXiv:2002.11394 (2020)
[23]
Fan, X., Li, B., Sisson, S.: Rectangular bounding process. In: Advances in Neural Information Processing Systems. pp. 7631–7641 (2018)
[24]
Fan, X., Li, B., Sisson, S.A.: Online binary space partitioning forests. arXiv:2003.00269 (2020)
[25]
Fan, X., Li, B., Sisson, S.A.: Binary space partitioning forests. arXiv:1903.09348 (2019)
[26]
Fan, X., Li, B., Wang, Y., Wang, Y., Chen, F.: The Ostomachion Process. In: AAAI Conference on Artificial Intelligence. pp. 1547–1553 (2016)
[27]
Ferguson, T.: Bayesian analysis of some nonparametric problems. Annals of Statistics 2(1), 209–230 (1973)
[28]
de Finetti, B.: Funzione caratteristica di un fenomeno aleatorio. Memorie della R. Academia Nazionale dei Lincei 4(5), 251–299 (1930)
[29]
Frédérique, B., B. Mathilde, F.V., Lucas, G., M. Mickaël, P.A.: Universal limits of substitution-closed permutation classes. Journal of European Mathematical Society 22, 3565–3639 (2020)
[30]
Ge, S., Wang, S., Teh, Y.W., Wang, L., Elliott, L.: Random tessellation forests. In: Advances in Neural Information Processing Systems 32, pp. 9575–9585 (2019)
[31]
Ghosh, S., Ungureunu, A., Sudderth, E., Blei, D.: Spatial distance dependent Chinese restaurant processes for image segmentation. In: Advances in Neural Information Processing Systems (2011)
[32]
He, B.D.: A simple optimal binary representation of mosaic floorplans and Baxter permutations. Theoretical Computer Science 532(1), 40–50 (2014)
[33]
Hong, X., Huang, G., Cai, Y., Gu, J., Dong, S., Cheng, C., Gu, J.: Corner block list: an effective and efficient topological representation of non-slicing floorplan. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (2000)
[34]
Hoover, D.N.: Relations on probability spaces and arrays of random variables. Tech. rep., Institute of Advanced Study, Princeton (1979)
[35]
Hoppen, C., Kohayakawa, Y., Moreira, C.G., Ráth, B., Sampaio, R.M.: Limits of permutation sequences. Journal of Combinatorial Theory, Series B 103(1), 93—-113 (2013)
[36]
Ishiguro, K., Sato, I., Nakano, M., Kimura, A., Ueda, N.: Infinite plaid models for infinite bi-clustering. pp. 1701–1708 (2016)
[37]
Kallenberg, O.: Symmetries on random arrays and set-indexed processes. Journal of Theoretical Probability 5(4), 727–765 (1992)
[38]
Kemp, C., Tenenbaum, J.B., Griffiths, T.L., Yamada, T., Ueda, N.: Learning systems of concepts with an infinite relational model. In: AAAI Conference on Artificial Intelligence. pp. 381–388 (2006)
[39]
Law, S., Reading, N.: The hopf algebra of diagonal rectangulations. Journal of Combinatorial Theory, Series A 119(3), 788–824 (2012)
[40]
Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web. pp. 641–650 (2010)
[41]
Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data (Jun 2014)
[42]
Lin, D., Fisher, J.: Efficient sampling from combinatorial space via bridging. In: International Conference on Artificial Intelligence and Statistics (2012)
[43]
Lloyd, J., Orbanz, P., Ghahramani, Z., Roy, D.M.: Random function priors for exchangeable arrays with applications to graphs and relational data. In: Advances in Neural Information Processing Systems (2012)
[44]
Lovász, L.: Very large graphs. Current Developments in Mathematics 11, 67–128 (2009)
[45]
Maazoun, M.: On the brownian separable permuton. Combinatorics, Probability and Computing 29(2), 241–266 (2019)
[46]
Miller, K., Jordan, M.I., Griffiths, T.L.: Nonparametric latent feature models for link prediction. pp. 1276–1284 (2009)
[47]
Nakano, M., Kimura, A., Yamada, T., Ueda, N.: Baxter permutation process. In: Advances in Neural Information Processing Systems (2020)
[48]
Nakano, M., Ishiguro, K., Kimura, A., Yamada, T., Ueda, N.: Rectangular tiling process. In: Proceedings of the 31st International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 32, pp. 361–369 (2014)
[49]
Orbanz, P., Roy, D.M.: Bayesian models of graphs, arrays and other exchangeable random structures. IEEE Transactions on Pattern Analysis and Machine Intelligence 37, 437–461 (2013)
[50]
Pitman, J., Yor, M.: The two-parameter poisson-dirichlet distribution derived from a stable subordinator. IBM Journal of Research and Development 2(25), 855–900 (1997)
[51]
Rasmussen, C.: The infinite gaussian mixture model. In: Advances in Nueral Information Processing Systems (2000)
[52]
Reading, N.: Generic rectangulations. European Journal of Combinatorics 33(4), 610–623 (2012)
[53]
Rodriguez, A., Ghosh, K.: Nested partition models. Tech. rep., JackBaskin School of Engineering (2009)
[54]
Roy, D.M.: Computability, inference and modeling in probabilistic programming. Ph.D. thesis, Massachusetts Institute of Technology (2011)
[55]
Roy, D.M., Teh, Y.W.: The Mondrian process. In: Advances in Neural Information Processing Systems (2009)
[56]
Saad, F.A., Mansinghka, V.K.: Hierarchical infinite relational model. In: Proceedings of the 37th Conference on Uncertainty in Artificial Intelligence. AUAI Press, Arlington, VA, USA (2021)
[57]
Sethuraman, J.: A constructive definition of Dirichlet priors. Statistica Sinica 4, 639–650 (1994)
[58]
Shan, H., Banerjee, A.: Bayesian co-clustering. In: IEEE International Conference on Data Mining. pp. 530–539 (2008)
[59]
Shen, Z.C., Chu, C.C.N.: Bounds on the number of slicing, mosaic, and general floorplans. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(10), 1354–1361 (2003)
[60]
Tan, X., Rao, V., Neville, J.: Nested crp with hawkes-gaussian processes. In: Storkey, A., Perez-Cruz, F. (eds.) Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 84, pp. 1289–1298 (2018)
[61]
Teh, Y.W., Jordan, M.I., Beal, M., Blei, D.: Hierarchical Dirichlet processes. Journal of the AmericanStatistical Association 101, 1566–1581 (2006)
[62]
Yao, B., Chen, H., Cheng, C.K., Graham, R.L.: Floorplan representations: Complexity and connections. ACM Transactions on Design Automation of Electronic Systems 8(1), 55–80 (2003)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
NIPS '21: Proceedings of the 35th International Conference on Neural Information Processing Systems
December 2021
30517 pages

Publisher

Curran Associates Inc.

Red Hook, NY, United States

Publication History

Published: 10 June 2024

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media