Robust data pruning under label noise via maximizing re-labeling accuracy
Abstract
Supplementary Material
- Download
- 288.79 KB
References
Recommendations
Transductive Multilabel Learning via Label Set Propagation
The problem of multilabel classification has attracted great interest in the last decade, where each instance can be assigned with a set of multiple class labels simultaneously. It has a wide variety of real-world applications, e.g., automatic image ...
Semi-supervised partial label learning algorithm via reliable label propagation
AbstractPartial label learning (PLL) is a weakly supervised learning method that is able to predict one label as the correct answer from a given candidate label set. In PLL, when all possible candidate labels are as signed to real-world training examples, ...
Improving Text Classification Accuracy by Training Label Cleaning
In text classification (TC) and other tasks involving supervised learning, labelled data may be scarce or expensive to obtain. Semisupervised learning and active learning are two strategies whose aim is maximizing the effectiveness of the resulting ...
Comments
Information & Contributors
Information
Published In
Publisher
Curran Associates Inc.
Red Hook, NY, United States
Publication History
Qualifiers
- Research-article
- Research
- Refereed limited
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0