Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-59835-7_9guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

The Extension Complexity of Polytopes with Bounded Integral Slack Matrices

Published: 03 July 2024 Publication History

Abstract

We show that any bounded integral function f:A×B{0,1,,Δ} with rank r has deterministic communication complexity ΔO(Δ)·r·logr, where the rank of f is defined to be the rank of the A×B matrix whose entries are the function values. As a corollary, we show that any n-dimensional polytope that admits a slack matrix with entries from {0,1,,Δ} has extension complexity at most exp(ΔO(Δ)·n·logn).

References

[1]
Barvinok, A.: Approximations of convex bodies by polytopes and by projections of spectrahedra. arXiv preprint: arXiv:1204.0471 (2012)
[2]
Conforti M, Cornuéjols G, and Zambelli G Extended formulations in combinatorial optimization 4OR 2010 8 1 1-48
[3]
Fawzi H, Gouveia J, Parrilo PA, Robinson RZ, and Thomas RR Positive semidefinite rank Math. Program. 2015 153 133-177
[4]
Fiorini S, Massar S, Pokutta S, Tiwary HR, and De Wolf R Exponential lower bounds for polytopes in combinatorial optimization J. ACM (JACM) 2015 62 2 1-23
[5]
Linial N, Mendelson S, Schechtman G, and Shraibman A Complexity measures of sign matrices Combinatorica 2007 27 439-463
[6]
Lovász, L., Saks, M.: Lattices, mobius functions and communications complexity. In: 29th Annual Symposium on Foundations of Computer Science, pp. 81–90. IEEE Computer Society (1988)
[7]
Lovett S Communication is bounded by root of rank J. (JACM) 2016 63 1 1-9
[8]
Nisan N and Wigderson A On rank vs. communication complexity Combinatorica 1995 15 4 557-565
[9]
Rao A and Yehudayoff A Communication Complexity and Applications 2020 Cambridge Cambridge University Press
[10]
Rothvoß, T.: A direct proof for Lovett’s bound on the communication complexity of low rank matrices. arXiv preprint: arXiv:1409.6366 (2014)
[11]
Rothvoß T The matching polytope has exponential extension complexity J. ACM (JACM) 2017 64 6 1-19
[12]
Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 223–228 (1988)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Integer Programming and Combinatorial Optimization: 25th International Conference, IPCO 2024, Wroclaw, Poland, July 3–5, 2024, Proceedings
Jul 2024
473 pages
ISBN:978-3-031-59834-0
DOI:10.1007/978-3-031-59835-7
  • Editors:
  • Jens Vygen,
  • Jarosław Byrka

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 03 July 2024

Author Tags

  1. Polytope
  2. Slack matrix
  3. Extension complexity

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media