Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1111/cgf.15185acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Strongly Coupled Simulation of Magnetic Rigid Bodies

Published: 18 September 2024 Publication History

Abstract

We present a strongly coupled method for the robust simulation of linear magnetic rigid bodies. Our approach describes the magnetic effects as part of an incremental potential function. This potential is inserted into the reformulation of the equations of motion for rigid bodies as an optimization problem. For handling collision and friction, we lean on the Incremental Potential Contact (IPC) method. Furthermore, we provide a novel, hybrid explicit / implicit time integration scheme for the magnetic potential based on a distance criterion. This reduces the fill-in of the energy Hessian in cases where the change in magnetic potential energy is small, leading to a simulation speedup without compromising the stability of the system. The resulting system yields a strongly coupled method for the robust simulation of magnetic effects. We showcase the robustness in theory by analyzing the behavior of the magnetic attraction against the contact resolution. Furthermore, we display stability in practice by simulating exceedingly strong and arbitrarily shaped magnets. The results are free of artifacts like bouncing for time step sizes larger than with the equivalent weakly coupled approach. Finally, we showcase the utility of our method in different scenarios with complex joints and numerous magnets.

References

[1]
[BET14] Bender, Jan, Erleben, Kenny, and Trinkle, Jeff. "Interactive Simulation of Rigid Body Dynamics in Computer Graphics". Computer Graphics Forum 33.1 (2014), 246--270. issn: 1467-8659. url: http://dx.doi.org/10.1111/cgf.12272 2.
[2]
[CLL*22] Chen, Yunuo, Li, Minchen, Lan, Lei, et al. "A unified newton barrier method for multibody dynamics". ACM Transactions on Graphics (TOG) 41.4 (2022), 1--14 3.
[3]
[CLW24] Chen, Yi-Lu, Ly, Mickaël, and Wojtan, Chris. "Primal-Dual Non-Smooth Friction for Rigid Body Animation". (Sept. 2024) 9.
[4]
[CNZ*22] Chen, Xuwen, Ni, Xingyu, Zhu, Bo, et al. "Simulation and optimization of magnetoelastic thin shells". ACM Trans. Graph. 41.4 (July 2022). issn: 0730-0301. url: https://doi.org/10.1145/3528223.3530142 1, 3, 4.
[5]
[Cou15] Coumans, Erwin. "Bullet physics simulation". ACM SIGGRAPH 2015 Courses. 2015, 1 8.
[6]
[FLL*24] Fernández-Fernández, José Antonio, Lange, Ralph, Laible, Stefan, et al. "STARK: A Unified Framework for Strongly Coupled Simulation of Rigid and Deformable Bodies with Frictional Contact". 2024 IEEE International Conference on Robotics and Automation (ICRA). 2024 6.
[7]
[FLS*21] Ferguson, Zachary, Li, Minchen, Schneider, Teseo, et al. "Intersection-free rigid body dynamics". ACM Transactions on Graphics 40.4 (2021) 3, 5.
[8]
[FLW*23] Fernández-Fernández, José Antonio, Löschner, Fabian, Westhofen, Lukas, et al. "Symx: Energy-based simulation from symbolic expressions". arXiv preprint arXiv:2303.02156 (2023) 6.
[9]
[GR87] Greengard, Leslie and Rokhlin, Vladimir. "A fast algorithm for particle simulations". Journal of computational physics 73.2 (1987), 325--348 10.
[10]
[GSS*15] Gast, Theodore F, Schroeder, Craig, Stomakhin, Alexey, et al. "Optimization integrator for large time steps". IEEE transactions on visualization and computer graphics 21.10 (2015), 1103--1115 3.
[11]
[HHM19] Huang, Libo, Hädrich, Torsten, and Michels, Dominik L. "On the accurate large-scale simulation of ferrofluids". ACM Transactions on Graphics (TOG) 38.4 (2019), 1--15 1, 2.
[12]
[HM20] Huang, Libo and Michels, Dominik L. "Surface-only ferrofluids". ACM Transactions on Graphics (TOG) 39.6 (2020), 1--17 2.
[13]
[IYI*12a] Ishikawa, Tomokazu, Yue, Yonghao, Iwasaki, Kei, et al. "Visual simulation of magnetic fluid taking into account dynamic deformation in spikes". Image Electronics and Visual Computing Workshop. 2012 2.
[14]
[IYI*12b] Ishikawa, Tomokazu, Yue, Yonghao, Iwasaki, Kei, et al. "Visual Simulation of Magnetic Fluids." GRAPP/IVAPP. 2012, 319--327 1, 2.
[15]
[IYI*13] Ishikawa, Tomokazu, Yue, Yonghao, Iwasaki, Kei, et al. "Visual Simulation of Magnetic Fluids Using Dynamic Displacement Mapping for Spike Shapes". IIEEJ Transactions on Image Electronics and Visual Computing 1.1 (2013), 51--57 2.
[16]
[Jac98] Jackson, John David. Classical Electrodynamics. 3rd. Wiley, 1998 2, 4.
[17]
[JSS*22] Jeske, Stefan Rhys, Simon, Marek Sebastian, Semenov, Oleksii, et al. "Quantitative evaluation of SPH in TIG spot welding". Computational Particle Mechanics (Apr. 2022). 2.
[18]
[KABA11] Kennedy, Mark W, Akhtar, Shahid, Bakken, Jon Arne, and Aune, Ragnhild E. "Analytical and experimental validation of electromagnetic simulations using COMSOL®, re inductance, induction heating and magnetic fields". COMSOL users conference, Stuttgart Germany. 2011, 1--9 2.
[19]
[KH20] Kim, Seung-wook and Han, JungHyun. "Simulation of Arbitrarily-shaped Magnetic Objects". Computer Graphics Forum. Vol. 39. 7. Wiley Online Library. 2020, 119--130 1, 2.
[20]
[KH22] Kim, Seung-wook and Han, JungHyun. "Fast stabilization of inducible magnet simulation". SIGGRAPH Asia 2022 Conference Papers. 2022, 1--8 2.
[21]
[KMOW00] Kane, Couro, Marsden, Jerrold E, Ortiz, Michael, and West, Matthew. "Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems". International Journal for numerical methods in engineering 49.10 (2000), 1295--1325 3.
[22]
[KPH18] Kim, Seung-Wook, Park, Sun Young, and Han, Junghyun. "Magnetization dynamics for magnetic object interactions". ACM Transactions on Graphics (TOG) 37.4 (2018), 1--13 1, 2.
[23]
[LFS*20] Li, Minchen, Ferguson, Zachary, Schneider, Teseo, et al. "Incremental potential contact: intersection-and inversion-free, large-deformation dynamics." ACM Trans. Graph. 39.4 (2020), 49 3, 5.
[24]
[LKL*22] Lan, Lei, Kaufman, Danny M, Li, Minchen, et al. "Affine body dynamics: Fast, stable & intersection-free simulation of stiff materials". arXiv preprint arXiv:2201.10022 (2022) 3.
[25]
[MEM*20] Macklin, Miles, Erleben, Kenny, Müller, Matthias, et al. "Primal/dual descent methods for dynamics". Computer Graphics Forum. Vol. 39. 8. Wiley Online Library. 2020, 89--100 3.
[26]
[MTGG11] Martin, Sebastian, Thomaszewski, Bernhard, Grinspun, Eitan, and Gross, Markus. "Example-based elastic materials". ACM Trans. Graph. 30.4 (July 2011). issn: 0730-0301. url: https://doi.org/10.1145/2010324.1964967 3.
[27]
[NZWC20] Ni, Xingyu, Zhu, Bo, Wang, Bin, and Chen, Baoquan. "A level-set method for magnetic substance simulation". ACM Trans. Graph. 39.4 (Aug. 2020). issn: 0730-0301. url: https://doi.org/10.1145/3386569.3392445 2, 3.
[28]
[PGK*22] Padilla, Marcel, Gross, Oliver, Knöppel, Felix, et al. "Filament based plasma". ACM Transactions on Graphics (TOG) 41.4 (2022), 1--14 2.
[29]
[PLH16] Park, Jiyoung, Lee, KyungOk, and Han, JungHyun. "Interactive visualization of magnetic field for virtual science experiments". Journal of Visualization 19.1 (2016), 129--139 2.
[30]
[Rok85] Rokhlin, Vladimir. "Rapid solution of integral equations of classical potential theory". Journal of Computational Physics 60.2 (1985), 187--207. issn: 0021-9991 10.
[31]
[Smi06] Smith, Russ. Open Dynamics Engine. 2006. url: https://www.ode.org/ 8.
[32]
[SNZ*21] Sun, Yuchen, Ni, Xingyu, Zhu, Bo, et al. "A material point method for nonlinearly magnetized materials". ACM Trans. Graph. 40.6 (Dec. 2021). issn: 0730-0301. url: https://doi.org/10.1145/3478513.3480541 1, 3.
[33]
[TGPS08] Thomaszewski, Bernhard, Gumann, Andreas, Pabst, Simon, and Strasser, Wolfgang. "Magnets in motion". ACM Transactions on Graphics (TOG) 27.5 (2008), 1--9 1, 2, 4, 5, 7, 8.
[34]
[YLUH14] Yoon, Wonbae, Lee, Namil, Um, Kiwon, and Han, JungHyun. "Computer-generated iron filing art". The Visual Computer 30.6 (2014), 889--895 2.

Index Terms

  1. Strongly Coupled Simulation of Magnetic Rigid Bodies

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SCA '24: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
    August 2024
    276 pages

    Sponsors

    In-Cooperation

    • EUROGRAPHICS: The European Association for Computer Graphics

    Publisher

    Eurographics Association

    Goslar, Germany

    Publication History

    Published: 18 September 2024

    Check for updates

    Qualifiers

    • Research-article

    Conference

    SCA '24
    Sponsor:
    SCA '24: ACM SIGGRAPH/Eurographics Symposium on Computer Animation
    August 21 - 23, 2024
    Quebec, Montreal, Canada

    Acceptance Rates

    Overall Acceptance Rate 183 of 487 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 6
      Total Downloads
    • Downloads (Last 12 months)6
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Jan 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media