Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Time Discretization Schemes for Poincaré Waves in Finite-Element Shallow-Water Models

Published: 01 September 2011 Publication History

Abstract

The finite-element spatial discretization of the linear shallow-water equations is examined in the context of several temporal discretization schemes. Three finite-element pairs are considered, namely, the $P^{}_{0}-P^{}_{1}$, $P^{NC}_{1}-P^{}_{1}$, and $RT^{}_{0}-P^{}_{0}$ schemes, and the backward and forward Euler, Crank-Nicolson, and second and third order Adams-Bashforth time stepping schemes are employed. A Fourier analysis is performed at the discrete level for the Poincaré waves, and it determines the stability limit of the schemes and the error in wave amplitude and phase that can be expected. Numerical solutions of test problems to simulate Poincaré waves illustrate the analytical results.

References

[1]
A. J. Adcroft, C. N. Hill, and J. C. Marshall, A new treatment of the Coriolis terms in C-grid models at both high and low resolutions, Mon. Wea. Rev., 127 (1999), pp. 1928-1936.
[2]
V. Agoshkov, E. Ovtchinnikov, V. Pennati, D. Ambrosi, and F. Saleri, Finite element, finite volume, and finite differences approximation to the shallow water equations, in Finite Elements in Fluids, K. Morgan, E. Oñate, J. Periaux, J. Peraire, and O. C. Zienkiewicz, eds., Pineridge Press, Barcelona, Spain, 1993, pp. 1001-1009.
[3]
J. H. Atkinson, J. J. Westerink, and R. A. Luettich, Two-dimensional dispersion analyses of finite element approximations to the shallow water equations, Internat. J. Numer. Methods Fluids, 45 (2004), pp. 715-749.
[4]
J. Baranger, J. F. Maitre, and F. Oudin, Connection between finite volume and mixed finite element methods, Math. Model. Numer. Anal., 30 (1996), pp. 445-465.
[5]
M. L. Batteen and Y. J. Han, On the computational noise of finite-difference schemes used in ocean models, Tellus, 33 (1981), pp. 387-396.
[6]
J. M. Beckers, Selection of a staggered grid for inertia-gravity waves in shallow-water, Internat. J. Numer. Methods Fluids, 38 (2002), pp. 729-746.
[7]
P. E. Bernard, J. F. Remacle, and V. Legat, Modal analysis on unstructured meshes of the dispersion properties of the $P^{NC}_{1} - P^{}_{1}$ pair, Ocean Modelling, 28 (2009), pp. 2-11.
[8]
G. F. Carey, ed., Finite Element Modeling of Environmental Problems, John Wiley and Sons, Chichester, UK, 1995.
[9]
M. Crouzeix and P. A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numer., 7 (1973), pp. 33-75.
[10]
B. Cushman-Roisin, Introduction to Geophysical Fluid Dynamics, Prentice-Hall, Englewood Cliffs, NJ, 1994.
[11]
S. Danilov, G. Kivman, and J. Schröter, A finite-element ocean model: Principles and evaluation, Ocean Modelling, 6 (2004), pp. 125-150.
[12]
M. G. G. Foreman, An analysis of two-step time discretizations in the solution of the linearized shallow water equations, J. Comput. Phys., 51 (1983), pp. 454-483.
[13]
M. G. G. Foreman, A two-dimensional dispersion analysis of selected methods for solving the linearized shallow water equations, J. Comput. Phys., 56 (1984), pp. 287-323.
[14]
C. M. Gossard and R. L. Kolar, Phase behavior of a finite volume shallow water algorithm, in Proceedings of the CMWR XIII Volume 2: Computational Methods, Surface Water Systems, and Hydrology, L. R. Bentley et al., eds., A. A. Balkema, Rotterdam, 2000, pp. 921-928.
[15]
W. G. Gray and D. R. Linch, Time-stepping schemes for finite-element tidal model computations, Adv. Water Res., 1 (1977), pp. 83-95.
[16]
E. Hanert, R. Walters, D. Y. Le Roux, and J. Pietrzak, A tale of two elements: $P_{1}^{NC}-P^{}_{1}$ and $RT^{}_{0}$, Ocean Modelling, 28 (2009), pp. 24-33.
[17]
E. Hanert, D. Y. Le Roux, V. Legat, and E. Deleersnijder, An efficient Eulerian finite-element method for the shallow-water equations, Ocean Modelling, 10 (2005), pp. 115-136.
[18]
E. Hinton, T. Rock, and O. C. Zienkiewicz, A note on mass lumping and related processes in the finite element method, Earthquake Engineering and Structural Dynamics, 4 (1976), pp. 245-249.
[19]
B. L. Hua and F. Thomasset, A noise-free finite-element scheme for the two-layer shallow-water equations, Tellus, 36 (1984), pp. 157-165.
[20]
M. Iskandarani, D. Haidvogel, and J. Boyd, A staggered spectral finite-element model for the shallow-water equations, Internat. J. Numer. Methods Fluids, 20 (1995), pp. 393-414.
[21]
P. H. LeBlond and L. A. Mysak, Waves in the Ocean, Elsevier, Amsterdam, 1978.
[22]
J. J. Leendertse, Aspects of a computational model for long period water wave propagation, Tech. report RM-5294-PR, RAND Memorandum, RAND Corporation, Santa Monica, CA, 1967.
[23]
D. Y. Le Roux, A new triangular finite-element with optimum constraint ratio for compressible fluids, SIAM J. Sci. Comput., 23 (2001), pp. 66-80.
[24]
D. Y. Le Roux, A. Sene, V. Rostand, and E. Hanert, On some spurious mode issues in shallow-water models using a linear algebra approach, Ocean Modelling, 10 (2005), pp. 83-94.
[25]
D. Y. Le Roux and G. F. Carey, Stability/dispersion analysis of the discontinuous Galerkin linearized shallow-water system, Internat. J. Numer. Methods Fluids, 48 (2005), pp. 325-347.
[26]
D. Y. Le Roux, Dispersion relation analysis of the $P^{NC}_{1} - P^{}_{1}$ finite-element pair in shallow-water models, SIAM J. Sci. Comput., 27 (2005), pp. 394-414.
[27]
D. Y. Le Roux, V. Rostand, and B. Pouliot, Analysis of numerically induced oscillations in $2$D finite-element shallow-water models Part I: Inertia-gravity waves, SIAM J. Sci. Comput., 29 (2007), pp. 331-360.
[28]
D. Y. Le Roux and B. Pouliot, Analysis of numerically induced oscillations in two-dimensional finite-element shallow-water models Part II: Free planetary waves, SIAM J. Sci. Comput., 30 (2008), pp. 1971-1991.
[29]
D. Y. Le Roux, E. Hanert, V. Rostand, and B. Pouliot, Impact of mass lumping on gravity and Rossby waves in $2$D finite-element shallow-water models, Internat. J. Numer. Methods Fluids, 59 (2009), pp. 767-790.
[30]
X. Lu and J. Zhang, Numerical study on spatially varying bottom friction coefficient of a $2$D tidal model with adjoint method, Continent. Shelf Res., 26 (2006), pp. 1905-1923.
[31]
D. R. Lynch and W. G. Gray, A wave-equation model for finite-element tidal computations, Comput. Fluids, 7 (1979), pp. 207-228.
[32]
A. M. Mohammadian and D. Y. Le Roux, Fourier analysis of a class of upwind schemes in shallow-water systems for gravity and Rossby waves, Internat. J. Numer. Methods Fluids, 57 (2008), pp. 389-416.
[33]
J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.
[34]
D. A. Randall, Geostrophic adjustment and the finite-difference shallow-water equations, Mon. Wea. Rev., 122 (1994), pp. 1371-1377.
[35]
P. Raviart and J. Thomas, A mixed finite element method for $2$nd order elliptic problems, in Mathematical Aspects of the Finite Element Methods, Lecture Notes in Math. 606, I. Galligani and E. Magenes, eds., Springer-Verlag, Berlin, 1977, pp. 292-315.
[36]
V. Rostand, D. Y. Le Roux, and G. F. Carey, Kernel analysis of the discretized finite difference and finite element shallow-water models, SIAM J. Sci. Comput., 31 (2008), pp. 531-556.
[37]
V. Rostand and D. Y. Le Roux, Raviart-Thomas and Brezzi-Douglas-Marini finite-element approximations of the shallow-water equations, Internat. J. Numer. Methods Fluids, 57 (2008), pp. 951-976.
[38]
F. Thomasset, Implementation of Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1981.
[39]
R. A. Walters, Numerically induced oscillations in finite element approximations to the shallow-water equations, Internat. J. Numer. Methods Fluids, 3 (1983), pp. 591-604.
[40]
R. A. Walters and G. F. Carey, Numerical noise in ocean and estuarine models, Adv. Water Res., 7 (1984), pp. 15-20.
[41]
R. A. Walters, A three-dimensional finite-element model for coastal and estuarine circulation, Continent. Shelf Res., 12 (1992), pp. 83-102.
[42]
R. A. Walters and G. F. Carey, Analysis of spurious oscillation modes for the shallow-water and Navier-Stokes equations, Comput. Fluids, 11 (1983), pp. 51-68.
[43]
R. A. Walters and V. Casulli, A robust, finite-element model for hydrostatic surface water flows, Commun. Numer. Meth. Engrg., 14 (1998), pp. 931-940.
[44]
R. T. Williams, On the formulation of the finite-element prediction models, Mon. Wea. Rev., 109 (1981), pp. 463-466.

Cited By

View all

Index Terms

  1. Time Discretization Schemes for Poincaré Waves in Finite-Element Shallow-Water Models
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image SIAM Journal on Scientific Computing
            SIAM Journal on Scientific Computing  Volume 33, Issue 5
            Special Section: 2010 Copper Mountain Conference
            2011
            972 pages

            Publisher

            Society for Industrial and Applied Mathematics

            United States

            Publication History

            Published: 01 September 2011

            Author Tags

            1. Poincaré waves
            2. dispersion analysis
            3. finite-element method
            4. shallow water equations
            5. stability of numerical methods
            6. time discretization

            Qualifiers

            • Article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 03 Oct 2024

            Other Metrics

            Citations

            Cited By

            View all

            View Options

            View options

            Get Access

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media