Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A High Accuracy Preserving Parallel Algorithm for Compact Schemes for DNS

Published: 16 October 2020 Publication History

Abstract

A new accuracy-preserving parallel algorithm employing compact schemes is presented for direct numerical simulation of the Navier-Stokes equations. Here the connotation of accuracy preservation is having the same level of accuracy obtained by the proposed parallel compact scheme, as the sequential code with the same compact scheme. Additional loss of accuracy in parallel compact schemes arises due to necessary boundary closures at sub-domain boundaries. An attempt to circumvent this has been done in the past by the use of Schwarz domain decomposition and compact filters in “A new compact scheme for parallel computing using domain decomposition,” J. Comput. Phys. 220, 2 (2007), 654--677, where a large number of overlap points was necessary to reduce error. A parallel compact scheme with staggered grids has been used to report direct numerical simulation of transition and turbulence by the Schwarz domain decomposition method. In the present research, we propose a new parallel algorithm with two benefits. First, the number of overlap points is reduced to a single common boundary point between any two neighboring sub-domains, thereby saving the number of points used, with resultant speed-up. Second, with a proper design, errors arising due to sub-domain boundary closure schemes are reduced to a user designed error tolerance, bringing the new parallel scheme on par with sequential computing. Error reduction is achieved by using global spectral analysis, introduced in “Analysis of central and upwind compact schemes,” J. Comput. Phys. 192, 2, (2003) 677--694, which analyzes any discrete computing method in the full domain integrally. The design of the parallel compact scheme is explained, followed by a demonstration of the accuracy of the method by solving benchmark flows: (1) periodic two-dimensional Taylor-Green vortex problem; (2) flow inside two-dimensional square lid-driven cavity (LDC) at high Reynolds number; and (3) flow inside a non-periodic three-dimensional cubic LDC with the staggered grid arrangement.

References

[1]
N. A. Adams and K. Shariff. 1996. A high resolution hybrid compact-ENO scheme for shock turbulence interaction problem. J. Comput. Phys. 127, 1 (August 1996), 27--51.
[2]
A. Babucke. 2009. Direct Numerical Simulation of Noise-Generation Mechanisms in the Mixing Layer of a Jet. Ph.D. Dissertation. University of Stuttgart, Germany.
[3]
A. Babucke, J. Linn, M. J. Kloker, and U. Rist. 2006. Direct numerical simulation of shear flow phenomena on parallel vector computers. In High Performance Computing on Vector Systems, M. Resch, T. Bönisch, K. Benkert, T. Furui, Y. Seo, and W. Bez (Eds.). Springer, Berlin, Germany, 229--247.
[4]
M. Beckers and G. J. F. van Heijst. 1998. The observation of a triangular vortex in a rotating fluid. Fluid Dyn. Res. 22, 5 (May 1998), 265.
[5]
S. Bhaumik and T. K. Sengupta. 2014. Precursor of transition to turbulence: Spatiotemporal wave front. Phys. Rev. E 89, 4 (April 2014), 043018.
[6]
S. Bhaumik and T. K. Sengupta. 2015. A new velocity--vorticity formulation for direct numerical simulation of 3D transitional and turbulent flows. J. Comput. Phys. 284 (March 2015), 230--260.
[7]
S. Bhaumik and T. K. Sengupta. 2017. Impulse response and spatio-temporal wave-packets: The common feature of rogue waves, tsunami, and transition to turbulence. Phys. Fluids 29, 12 (December 2017), 124103.
[8]
S. Bhaumik and T. K. Sengupta. 2011. On the divergence-free condition of velocity in two-dimensional velocity-vorticity formulation of incompressible Navier-Stokes equation. In 20th AIAA Computational Fluid Dynamics Conference.
[9]
F. Capuano, A. Mastellone, and E. M. De Angelis. 2017. A conservative overlap method for multi-block parallelization of compact finite-volume schemes. Comput. Fluids 159 (December 2017), 327--337.
[10]
G. F. Carnevale and R. C. Kloosterziel. 1994. Emergence and evolution of triangular vortices. J. Fluid Mech. 259 (January 1994), 305--331.
[11]
M. H. Carpenter, J. Nordström, and D. Gottlieb. 1998. A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy, NASA/CR-1998-206921, ICASE Report No. 98-12. Langley Research Center, Hampton, VA. https://www.cs.odu.edu/mln/ltrs-pdfs/icase-1998-12.pdf.
[12]
J. Chao, A. Haselbacher, and S. Balachandar. 2009. A massively parallel multi-block hybrid compact-WENO scheme for compressible flows. J. Comput. Phys. 228, 19 (October 2009), 7473--7491.
[13]
P. C. Chu and C. Fan. 1998. A three-point combined compact difference scheme. J. Comput. Phys. 140, 2 (March 1998), 370--399.
[14]
A. Dipankar and T. K. Sengupta. 2006. Symmetrized compact scheme for receptivity study of 2D transitional channel flow. J. Comput. Phys. 215, 1 (June 2006), 245--273.
[15]
V. Dolean, S. Lanteri, and F. Nataf. 2002. Optimized interface conditions for domain decomposition methods in fluid dynamics. Int. J. Numer. Methods Fluids 40 (November 2002), 1539--1550.
[16]
J. Fang, F. Gao, C. Moulinec, and D. R. Emerson. 2019. An improved parallel compact scheme for domain-decoupled simulation of turbulence. Int. J. Numer. Methods Fluids 90, 10 (April 2019), 479--500.
[17]
V. F. Fico, D. R. Emerson, and M. Reese. 2011. A parallel compact-TVD method for compressible fluid dynamics employing shared and distributed-memory paradigms. Comput. Fluids 45, 1 (June 2011), 172--176.
[18]
L. Gamet, F. Ducros, F. Nicoud, and T. Poinsot. 1999. Compact finite difference schemes on nonuniform meshes. Application to direct numerical simulations of compressible flows. Int. J. Numer. Methods Fluids 29, 2 (February 1999), 159--191.
[19]
C. Ho and S. Johnsson. 1990. Optimizing tridiagonal solvers for on boolean cube multiprocessors. SIAM J. Sci. Comput 11, 3 (July 1990), 563--592.
[20]
J. Hofhaus and Eric F. van de Velde. 1996. Alternating-direction line-relaxation methods on multicomputers. SIAM J. Sci. Comput 17, 2 (February 1996), 454--478.
[21]
M. Keller and M. J. Kloker. 2013. Direct numerical simulations of film cooling in a supersonic boundary-layer flow on massively-parallel supercomputers. In Sustained Simulation Performance 2013: Proceedings of the Joint Workshop on Sustained Simulation Performance University of Stuttgart (HLRS) and Tohoku University, M. M. Resch, W. Bez, E. Focht, H. Kobaysahi, and Y. Kovalenko (Eds.). Springer, Cham, Switzerland, 107--128.
[22]
M. A. Keller and M. Kloker. 2013. DNS of effusion cooling in a supersonic boundary-layer flow: Influence of turbulence. 44th AIAA Thermophysics Conference, 2897 (June 2013).
[23]
J. W. Kim. 2007. Optimised boundary compact finite difference schemes for computational aeroacustics. J. Comput. Phys. 225, 1 (July 2007), 995--1019.
[24]
J. W. Kim. 2013. Quasi-disjoint pentadiagonal matrix system for the parallelization of compact finite-difference schemes and filters. J. Comput. Phys. 241 (2013), 168--194.
[25]
J. W. Kim and R. D. Sandberg. 2012. Efficient parallel computing with a compact finite difference scheme. Comput. Fluids 58 (April 2012), 70--87.
[26]
M. J. Kloker. 1997. A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition. Appl. Sci. Res., Springer 59, 4 (December 1997), 353--377.
[27]
E. K. Koutsavdis, G. A. Blaisdell, and A. S. Lyrintzis. 2000. Compact schemes with spatial filtering in computational aeroacoustics. AIAA J. 38, 4 (April 2000), 713--715.
[28]
S. Laizet and E. Lamballais. 2009. High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy. J. Comput. Phys. 228, 16 (September 2009), 5989--6015.
[29]
S. K. Lele. 1992. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1 (November 1992), 16--42.
[30]
L. Lestandi, S. Bhaumik, G. R. K. C. Avatar, M. Azaiez, and T. K. Sengupta. 2018. Multiple Hopf bifurcations and flow dynamics inside a 2D singular lid driven cavity. Comput. Fluids 166 (April 2018), 86--103.
[31]
P. L. Lions. 1990. On the Schwarz alternating method III: A variant for nonoverlapping subdomains. In 3rd International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. F. Chan, R. Glowinski, J. Periaux, and O. B. Widlund (Eds.). SIAM, Philadelphia, PA, 202--223.
[32]
S. Nagarajan, S. K. Lele, and J. H. Ferziger. 2003. A robust high-order compact method for large eddy simulation. J. Comput. Phys. 191, 2 (November 2003), 392--419.
[33]
N. H. Naik, V. K. Naik, and M. Nicoules. 1993. Parallelization of a class of implicit finite difference schemes in computational dynamics. Int. J. High Speed Comp. 5, 1 (1993), 1--50.
[34]
J. Nordström and M. H. Carpenter. 1999. Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier-Stokes equations. J. Comput. Phys. 148, 2 (January 1999), 621--645.
[35]
J. Nordström, J. Gong, E. van der Weide, and M. Svärd. 2009. A stable and conservative high order multi-block method for the compressible Navier-Stokes equations. J. Comput. Phys. 228, 24 (December 2009), 9020--9035.
[36]
F. Olsson and N. A. Petersson. 1996. Stability of interpolation on overlapping grids. Comput. Fluids 25, 6 (July 1996), 583--605.
[37]
S. A. Orszag. 1974. Numerical simulation of the Taylor-Green vortex. In Computing Methods in Applied Sciences and Engineering Part 2: International Symposium Versailles, Vol. 11. Springer, Berlin, Germany, 50--64.
[38]
S. Pirozzoli, M. Bernardini, and F. Grasso. 2008. Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613 (October 2008), 205--231.
[39]
A. Povitsky and P. J. Morris. 1999. Parallel compact multi-dimensional numerical algorithm with application to aeroacoustics. ICASE Report (1999), 99--34. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990079383.pdf.
[40]
A. Povitsky and P. J. Morris. 2000. A higher-order compact method in space and time based on parallel implementation of the Thomas algorithm. J. Comput. Phys. 161, 1 (June 2000), 182--203.
[41]
A. Quarteroni and A. Valli. 1999. Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, Oxford, UK.
[42]
M. K. Rajpoot, S. Bhaumik, and T. K. Sengupta. 2012. Solution of linearized rotating shallow water equations by compact schemes with different grid-staggering strategies. J. Comput. Phys. 231, 5 (March 2012), 2030--2327.
[43]
T. Sayadi, C. W. Hamman, and P. Moin. 2013. Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech. 724 (April 2013), 480--509.
[44]
T. K. Sengupta. 2013. High Accuracy Computing Methods: Fluid Flows and Wave Phenomena. Cambridge University Press, Cambridge, UK.
[45]
T. K. Sengupta and S. Bhaumik. 2019. DNS of Wall-Bounded Turbulent Flows: A First Principle Approach. Springer Nature, Singapore.
[46]
T. K. Sengupta, A. Dipankar, and A. K. Rao. 2007. A new compact scheme for parallel computing using domain decomposition. J. Comput. Phys. 220, 2 (January 2007), 654--677.
[47]
T. K. Sengupta, G. Ganeriwal, and S. De. 2003. Analysis of central and upwind compact schemes. J. Comput. Phys. 192, 2 (December 2003), 677--694.
[48]
T. K. Sengupta, G. Ganeriwal, and A. Dipankar. 2004. High accuracy compact schemes and Gibbs’ phenomenon. J. Sci. Comput. 21, 3 (December 2004), 253--268.
[49]
T. K. Sengupta, V. Lakshmanan, and VVSN Vijay. 2009. A new combined stable and dispersion relation preserving compact scheme for non-periodic problems. J. Comput. Phys. 228, 8 (May 2009), 3048--3071.
[50]
T. K. Sengupta, M. K. Rajpoot, and Y. G. Bhumkar. 2011. Space-time discretizing optimal DRP schemes for flow and wave propagation problems. Comput. Fluids 47, 1 (August 2011), 144--154.
[51]
T. K. Sengupta and A. Sengupta. 2016. A new alternating Bi-diagonal compact scheme for non-uniform grids. J. Comput. Phys. 310 (April 2016), 1--25.
[52]
T. K. Sengupta, N. Sharma, and A. Sengupta. 2018. Non-linear instability analysis of the two-dimensional Navier-Stokes equation: The Taylor-Green vortex problem. Phys. Fluids 30, 5 (May 2018), 054105.
[53]
T. K. Sengupta, S. K. Sircar, and A. Dipankar. 2006. High accuracy schemes for DNS and acoustics. J. Sci. Comput. 26, 2 (February 2006), 151--193.
[54]
T. K. Sengupta, VVSN Vijay, and S. Bhaumik. 2009. Further improvement and analysis of CCD scheme: Dissipation discretization and de-aliasing properties. J. Comput. Phys. 228, 17 (September 2009), 6150--6168.
[55]
T. K. Sengupta, VVSN Vijay, and N. Singh. 2011. Universal instability modes in internal and external flows. Comput. Fluids 40, 1 (January 2011), 221--235.
[56]
B. F. Smith, P. E. Bjφrstad, and W. D. Gropp. 2004. Domain Decomposition, Parallel Multilevel Methods For Elliptic Partial Differential Equations. Cambridge University Press, Cambridge, UK.
[57]
V. K. Suman, Siva Viknesh S., M. K. Tekriwal, S. Bhaumik, and T. K. Sengupta. 2019. Grid sensitivity and role of error in computing a lid-driven cavity problem. Phys. Rev. E 99, 7 (January 2019), 013305.
[58]
V. K. Suman, T. K. Sengupta, C. J. D. Prasad, K. S. Mohan, and D. Sanwalia. 2017. Spectral analysis of finite difference schemes for convection diffusion equation. Comput. Fluids 150 (June 2017), 95--114.
[59]
C. K. W. Tam and J. C. Webb. 1993. Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 2 (August 1993), 262--281.
[60]
H. A. van der Vorst. 1992. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. and Stat. Comput. 13, 2 (July 1992), 631--644.
[61]
M. R. Visbal and D. V. Gaitonde. 2002. On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 1 (September 2002), 155--185.
[62]
M. R. Visbal and D. P. Rizzetta. 2002. Large-eddy simulation on curvilinear grids using compact differencing and filtering schemes. J. Fluid Eng. 124, 4 (December 2002), 836--847.

Cited By

View all
  • (2024)Numerical simulation of sound attenuation in an acoustically lined duct in high-temperature air flowsAIP Advances10.1063/5.020017214:3Online publication date: 28-Mar-2024
  • (2024)A new compact scheme-based Lax–Wendroff method for high fidelity simulationsComputers & Fluids10.1016/j.compfluid.2024.106262276(106262)Online publication date: May-2024
  • (2023)Tridigpu: A GPU Library for Block Tridiagonal and Banded Linear Equation SystemsACM Transactions on Parallel Computing10.1145/358037310:1(1-33)Online publication date: 29-Mar-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Parallel Computing
ACM Transactions on Parallel Computing  Volume 7, Issue 4
Special Issue on Innovations in Systems for Irregular Applications, Part 2
December 2020
179 pages
ISSN:2329-4949
EISSN:2329-4957
DOI:10.1145/3426879
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 October 2020
Accepted: 01 June 2020
Revised: 01 June 2020
Received: 01 October 2019
Published in TOPC Volume 7, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. DNS
  2. Parallel computing
  3. Taylor-Green vortex
  4. boundary closure schemes
  5. compact schemes
  6. lid-driven cavity

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)24
  • Downloads (Last 6 weeks)3
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Numerical simulation of sound attenuation in an acoustically lined duct in high-temperature air flowsAIP Advances10.1063/5.020017214:3Online publication date: 28-Mar-2024
  • (2024)A new compact scheme-based Lax–Wendroff method for high fidelity simulationsComputers & Fluids10.1016/j.compfluid.2024.106262276(106262)Online publication date: May-2024
  • (2023)Tridigpu: A GPU Library for Block Tridiagonal and Banded Linear Equation SystemsACM Transactions on Parallel Computing10.1145/358037310:1(1-33)Online publication date: 29-Mar-2023
  • (2023)Efficient Distributed Matrix-free Multigrid Methods on Locally Refined Meshes for FEM ComputationsACM Transactions on Parallel Computing10.1145/358031410:1(1-38)Online publication date: 29-Mar-2023
  • (2023)Non-overlapping High-accuracy Parallel Closure for Compact Schemes: Application in Multiphysics and Complex GeometryACM Transactions on Parallel Computing10.1145/358000510:1(1-28)Online publication date: 29-Mar-2023
  • (2023)Performance Analysis and Optimal Node-aware Communication for Enlarged Conjugate Gradient MethodsACM Transactions on Parallel Computing10.1145/358000310:1(1-25)Online publication date: 29-Mar-2023
  • (2023)Global spectral analysis: Review of numerical methodsComputers & Fluids10.1016/j.compfluid.2023.105915261(105915)Online publication date: Jul-2023
  • (2022)Flow control using single dielectric barrier discharge plasma actuator for flow over airfoilPhysics of Fluids10.1063/5.010763834:9Online publication date: 27-Sep-2022
  • (2022)Controlling transonic shock–boundary layer interactions over a natural laminar flow airfoil by vortical and thermal excitationPhysics of Fluids10.1063/5.010429934:8Online publication date: 17-Aug-2022
  • (2022)Three-dimensional direct numerical simulation of Rayleigh–Taylor instability triggered by acoustic excitationPhysics of Fluids10.1063/5.009110934:5Online publication date: 10-May-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media