Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Killing a Vortex

Published: 01 August 2024 Publication History

Abstract

The Graph Minors Structure Theorem of Robertson and Seymour asserts that, for every graph H, every H-minor-free graph can be obtained by clique-sums of “almost embeddable” graphs. Here a graph is “almost embeddable” if it can be obtained from a graph of bounded Euler-genus by pasting graphs of bounded pathwidth in an “orderly fashion” into a bounded number of faces, called the vortices, and then adding a bounded number of additional vertices, called apices, with arbitrary neighborhoods. Our main result is a full classification of all graphs H for which the use of vortices in the theorem above can be avoided. To this end, we identify a (parametric) graph \(\mathscr{S}_{t}\) and prove that all \(\mathscr{S}_{t}\) -minor-free graphs can be obtained by clique-sums of graphs embeddable in a surface of bounded Euler-genus after deleting a bounded number of vertices. We show that this result is tight in the sense that the appearance of vortices cannot be avoided for H-minor-free graphs, whenever H is not a minor of \(\mathscr{S}_{t}\) for some \(t\in \mathbb {N}\) . Using our new structure theorem, we design an algorithm that, given an \(\mathscr{S}_{t}\) -minor-free graph G, computes the generating function of all perfect matchings of G in polynomial time. Our results, combined with known complexity results, imply a complete characterization of minor-closed graph classes where the number of perfect matchings is polynomially computable: They are exactly those graph classes that do not contain every \(\mathscr{S}_{t}\) as a minor. This provides a sharp complexity dichotomy for the problem of counting perfect matchings in minor-closed classes.

References

[1]
Manindra Agrawal. 2006. Determinant versus permanent. In Proceedings of the 25th International Congress of Mathematicians, ICM 2006. 985–997.
[2]
Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. 2023. Hitting minors on bounded treewidth graphs. IV. An optimal algorithm. SIAM J. Comput. 52, 4 (2023), 865–912. DOI:DOI:
[3]
Jacek Blazewicz, Piotr Formanowicz, Marta Kasprzak, Petra Schuurman, and Gerhard J. Woeginger. 2007. A polynomial time equivalence between DNA sequencing and the exact perfect matching problem. Discret. Optim. 4, 2 (2007), 154–162. DOI:DOI:
[4]
Jin-yi Cai, Pinyan Lu, and Mingji Xia. 2009. Holant problems and counting CSP. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31–June 2, 2009. Michael Mitzenmacher (Ed.), ACM, 715–724. DOI:DOI:
[5]
Jin-Yi Cai, Pinyan Lu, and Mingji Xia. 2016. Holographic algorithms. In Proceedings of the Encyclopedia of Algorithms. Springer, Berlin, 921–926. DOI:DOI:
[6]
Arthur Cayley. 1847. Sur les Déterminants Gauches. Journal für die reine und angewandte Mathematik Band 38. De Gruyter.
[7]
Radu Curticapean. 2014. Counting perfect matchings in graphs that exclude a single-crossing minor. arXiv:1406.4056. Retrieved from https://arxiv.org/abs/1406.4056
[8]
Radu Curticapean. 2019. Counting problems in parameterized complexity. In Proceedings of the 13th International Symposium on Parameterized and Exact Computation (IPEC 2018) (Leibniz International Proceedings in Informatics (LIPIcs)). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 1:1–1:18. DOI:DOI:
[9]
Radu Curticapean and Mingji Xia. 2015. Parameterizing the permanent: Genus, apices, minors, evaluation mod \(2k\) . In Proceedings of the IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17–20 October, 2015. Venkatesan Guruswami (Ed.), IEEE Computer Society, 994–1009. DOI:DOI:
[10]
Radu Curticapean and Mingji Xia. 2022. Parameterizing the permanent: Hardness for fixed excluded minors. In (SOSA’22). 297–307.
[11]
Radu Curticapean and Mingji Xia. 2022. Parameterizing the permanent: Hardness for fixed excluded minors. In Proceedings of the Symposium on Simplicity in Algorithms (SOSA ’22). SIAM, 297–307.
[12]
Reinhard Diestel. 2017. Graph Theory. Springer-Verlag, 5th Edition. DOI:DOI:
[13]
Reinhard Diestel, Ken-ichi Kawarabayashi, Theodor Müller, and Paul Wollan. 2012. On the excluded minor structure theorem for graphs of large tree-width. J. Comb. Theory, Ser. B 102, 6 (2012), 1189–1210.
[14]
Walther Dyck. 1888. Beiträge zur Analysis situs I. Math. Ann. 32, 4 (1888), 457–512. DOI:DOI:
[15]
J. Edmonds. 2009. Paths, Trees, and Flowers. In Classic Papers in Combinatorics, I. Gessel and G. C. Rota (Eds.) Modern Birkhäuser Classics. Birkhäuser Boston.
[16]
David Eppstein and Vijay V. Vazirani. 2019. NC algorithms for computing a perfect matching, the number of perfect matchings, and a maximum flow in one-crossing-minor-free graphs. In Proceedings of the 31st ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22–24, 2019. Christian Scheideler and Petra Berenbrink (Eds.), ACM, 23–30. DOI:DOI:
[17]
Anna Galluccio and Martin Loebl. 1999. On the theory of pfaffian orientations. I. Perfect matchings and permanents. Electron. J. Comb. 6 (1999), 1–18. Retrieved from http://www.combinatorics.org/Volume_6/Abstracts/v6i1r6.html
[18]
Anna Galluccio, Martin Loebl, and Jan Vondrák. 2001. Optimization via Enumeration: A new algorithm for the max cut problem. Math. Programming 90, 2 (2001), 273–290.
[19]
Archontia C. Giannopoulou, Stephan Kreutzer, and Sebastian Wiederrecht. 2024. Excluding a planar matching minor in bipartite graphs. J. Comb. Theory, Ser. B 164 (2024), 161–221.
[20]
Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. 2020. Hitting topological minor models in planar graphs is fixed parameter tractable. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5–8, 2020. Shuchi Chawla (Ed.), SIAM, 931–950. DOI:DOI:
[21]
Rohit Gurjar, Arpita Korwar, Jochen Messner, and Thomas Thierauf. 2017. Exact perfect matching in complete graphs. ACM Trans. Comput. Theory 9, 2 (2017), 8:1–8:20. DOI:DOI:
[22]
Frank Harary. 1991. Graph Theory. Addison-Wesley.
[23]
Ken ichi Kawarabayashi, Robin Thomas, and Paul Wollan. 2021. Quickly Excluding a Non-planar Graph. arXiv:2010.12397. Retrieved from https://arxiv.org/abs/2010.12397
[24]
Heinz A. Jung. 1970. Eine Verallgemeinerung des n-fachen Zusammenhangs für Graphen. Math. Ann. 187, 2 (1970), 95–103.
[25]
P. M. Kasteleyn. 1961. The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. Physica 27, 12 (1961), 1209–1225.
[26]
P. M. Kasteleyn. 1967. Graph theory and crystal physics. In Proceedings of the Graph Theory and Theoretical Physics. Academic Press, 43–110.
[27]
P. W. Kasteleyn. 1963. Dimer statistics and phase transitions. J. Math. Phys. 4, 2 (1963), 287–293. DOI:DOI:
[28]
Ken-ichi Kawarabayashi, Robin Thomas, and Paul Wollan. 2018. A new proof of the flat wall theorem. J. Comb. Theory, Ser. B 129 (2018), 204–238. DOI:DOI:
[29]
Ken-ichi Kawarabayashi and Paul Wollan. 2010. A shorter proof of the graph minor algorithm: The unique linkage theorem. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5–8 June 2010. Leonard J. Schulman (Ed.), ACM, 687–694. DOI:DOI:
[30]
Charles Little. 2006. An Extension of Kasteleyn’s Method of Enumerating the 1-factors of Planar Graphs. Springer, Berlin. DOI:DOI:
[31]
Tonglai Liu, Jigang Wu, Jiaxing Li, Jingyi Li, and Zikai Zhang. 2022. Efficient algorithms for storage load balancing of outsourced data in blockchain network. The Computer Journal 65, 6 (2022), 1512–1526.
[32]
C. R. F. Maunder. 1996. Algebraic Topology. Dover Publications, Inc., Mineola, NY.
[33]
William McCuaig. 2004. Pólya’s permanent problem. Electron. J. Comb. 11, 1 (2004), 1–83. Retrieved from http://www.combinatorics.org/Volume_11/Abstracts/v11i1r79.html
[34]
William McCuaig, Neil Robertson, Paul D. Seymour, and Robin Thomas. 1997. Permanents, pfaffian orientations, and even directed circuits (Extended Abstract). In Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4–6, 1997. Frank Thomson Leighton and Peter W. Shor (Eds.), ACM, 402–405. DOI:DOI:
[35]
Christos H. Papadimitriou and Mihalis Yannakakis. 1982. The complexity of restricted spanning tree problems. J. ACM 29, 2 (1982), 285–309. DOI:DOI:
[36]
Christophe Paul, Evangelos Protopapas, and Dimitrios M. Thilikos. 2023. Universal Obstructions of Graph Parameters. arXiv:2304.14121. Retrieved from https://arxiv.org/abs/2304.14121
[37]
G. P. 1913. Aufgabe 424. Arch. Math. Phys. 20, 3 (1913), 271.
[38]
Neil Robertson and Paul Seymour. 2009. Graph Minors. XXI. Graphs with unique linkages. J. Comb. Theory, Ser. B 99, 3 (2009), 583–616.
[39]
Neil Robertson and Paul D. Seymour. 1990. Graph Minors: IX. Disjoint crossed paths. J. Comb. Theory, Ser. B 49, 1 (1990), 40–77.
[40]
Neil Robertson and Paul D. Seymour. 1991. Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory, Ser. B 52, 2 (1991), 153–190. DOI:DOI:
[41]
Neil Robertson and Paul D. Seymour. 1991. Graph minors: X. Obstructions to tree-decomposition. J. Comb. Theory, Ser. B 52, 2 (1991), 153–190.
[42]
Neil Robertson and Paul D. Seymour. 1993. Excluding a graph with one crossing. In Proceedings of the Graph Structure Theory (Seattle, WA, 1991). Amer. Math. Soc., Providence, RI, 669–675.
[43]
Neil Robertson and Paul D. Seymour. 1995. Graph minors: XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63, 1 (1995), 65–110.
[44]
Neil Robertson and Paul D. Seymour. 2003. Graph minors. XVI. Excluding a non-planar graph. J. Comb. Theory, Ser. B 89, 1 (2003), 43–76. DOI:DOI:
[45]
Neil Robertson and Paul D. Seymour. 2004. Graph minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B 92, 2 (2004), 325–357. DOI:DOI:
[46]
Neil Robertson, P. D. Seymour, and Robin Thomas. 1999. Permanents, pfaffian orientations, and even directed circuits. Annals of Mathematics 150, 3 (1999), 929–975. Retrieved from http://www.jstor.org/stable/121059
[47]
Paul D. Seymour. 1980. Disjoint paths in graphs. Discr. Mathematics 29, 3 (1980), 293–309.
[48]
Paul D. Seymour and Robin Thomas. 1993. Graph searching and a min-max theorem for tree-width. J. Comb. Theory, Ser. B 58, 1 (1993), 22–33.
[49]
Yossi Shiloach. 1980. A polynomial solution to the undirected two paths problem. J. of the ACM 27, 3 (1980), 445–456.
[50]
Simon Straub, Thomas Thierauf, and Fabian Wagner. 2014. Counting the number of perfect matchings in \({K}_5\) -free graphs. In Proceedings of the IEEE 29th Conference on Computational Complexity, CCC 2014, Vancouver, BC, Canada, June 11–13, 2014. IEEE Computer Society, 66–77. DOI:DOI:
[51]
H. N. V. Temperley and Michael E. Fisher. 1961. Dimer problem in statistical mechanics-an exact result. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 6, 68 (1961), 1061–1063. DOI:DOI:
[52]
Glenn Tesler. 2000. Matchings in graphs on non-orientable surfaces. J. Comb. Theory, Ser. B 78, 2 (2000), 198–231. DOI:DOI:
[53]
Dimitrios M. Thilikos and Sebastian Wiederrecht. 2023. Approximating Branchwidth on Parametric Extensions of Planarity. arXiv:2304.04517. Retrieved from https://arxiv.org/abs/2304.04517
[54]
Dimitrios M. Thilikos and Sebastian Wiederrecht. 2023. Excluding Surfaces as Minors in Graphs. arXiv:2306.01724. Retrieved from https://arxiv.org/abs/2306.01724
[55]
Carsten Thomassen. 1980. 2-Linked graphs. Europ. J. of Combinatorics. 1, 4 (1980), 371–378.
[56]
Leslie G. Valiant. 1979. The complexity of computing the permanent. Theoretical Computer Science 8, 2 (1979), 189–201. DOI:DOI:
[57]
Leslie G. Valiant. 2008. Holographic algorithms. SIAM J. Comput. 37, 5 (2008), 1565–1594.
[58]
Vijay V. Vazirani. 1989. NC algorithms for computing the number of perfect matchings in \({K}_{3,3}\) -free graphs and related problems. Inf. Comput. 80, 2 (1989), 152–164. DOI:DOI:
[59]
Guohun Zhu, Xiangyu Luo, and Yuqing Miao. 2008. Exact weight perfect matching of bipartite graph is NP-complete. In Proceedings of the World Congress on Engineering. 1–7.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 71, Issue 4
August 2024
240 pages
EISSN:1557-735X
DOI:10.1145/3613647
  • Editor:
  • Venkatesan Guruswami
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 August 2024
Online AM: 14 May 2024
Accepted: 02 May 2024
Revised: 04 February 2024
Received: 26 July 2022
Published in JACM Volume 71, Issue 4

Check for updates

Author Tags

  1. Perfect matchings
  2. permanent
  3. pfaffian orientations
  4. graph minors
  5. counting algorithms
  6. graph parameters

Qualifiers

  • Research-article

Funding Sources

  • ANR projects DEMOGRAPH
  • ESIGMA
  • French-German Collaboration ANR/DFG Project UTMA
  • Institute for Basic Science

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 82
    Total Downloads
  • Downloads (Last 12 months)82
  • Downloads (Last 6 weeks)37
Reflects downloads up to 30 Aug 2024

Other Metrics

Citations

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media