Classical sorting algorithms as a model of morphogenesis: : Self-sorting arrays reveal unexpected competencies in a minimal model of basal intelligence
Abstract
The Diverse Intelligence research seeks to understand commonalities in behavioral competencies across a wide range of implementations. Especially interesting are simple systems that provide unexpected examples of memory, decision-making, or problem-solving in substrates that at first glance do not appear to be complex enough to implement such capabilities. We seek to develop tools to determine minimal requirements for such capabilities, and to learn to recognize and predict basal forms of intelligence in unconventional substrates. Here, we apply novel analyses to the behavior of classical sorting algorithms—short pieces of code studied for many decades. To study these sorting algorithms as a model of biological morphogenesis and its competencies, we break two formerly ubiquitous assumptions: top-down control (instead, each element within an array of numbers can exert minimal agency and implement sorting policies from the bottom up), and fully reliable hardware (instead, allowing elements to be “damaged” and fail to execute the algorithm). We quantitatively characterize sorting activity as traversal of a problem space, showing that arrays of autonomous elements sort themselves more reliably and robustly than traditional implementations in the presence of errors. Moreover, we find the ability to temporarily reduce progress in order to navigate around a defect, and unexpected clustering behavior among elements in chimeric arrays consisting of two different algorithms. The discovery of emergent problem-solving capacities in simple, familiar algorithms contributes a new perspective showing how basal forms of intelligence can emerge in simple systems without being explicitly encoded in their underlying mechanics.
References
[1]
Abramson C. I. and Levin M. (2021). Behaviorist approaches to investigating memory and learning: A primer for synthetic biology and bioengineering. Communicative & Integrative Biology, 14(1), 230–247. https://doi.org/10.1080/19420889.2021.2005863
[2]
Adamatzky A. (2012, Jun). Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Transactions on NanoBioscience, 11(2), 131–134. https://doi.org/10.1109/TNB.2011.2181978
[3]
Adamatzky A., Chiolerio A., and Szacilowski K. (2020, Feb 12). Liquid metal droplet solves maze. Soft Matter, 16(6), 1455–1462. https://doi.org/10.1039/c9sm01806a
[4]
Agmon E., Gates A. J., and Beer R. D. (2016, Fall). The structure of ontogenies in a model protocell. Artificial Life, 22(4), 499-517. https://doi.org/10.1162/ARTL_a_00215
[5]
Anderson P. W. (1972, Aug 4). More is different. Science, 177(4047), 393–396. https://doi.org/10.1126/science.177.4047.393
[6]
Arias Del Angel J. A., Nanjundiah V., Benítez M., and Newman S. A. (2020, 2020/10/12). Interplay of mesoscale physics and agent-like behaviors in the parallel evolution of aggregative multicellularity. EvoDevo, 11(1), 21. https://doi.org/10.1186/s13227-020-00165-8
[7]
Armstrong J. (2003). Making reliable distributed systems in the presence of sodware errors: The Royal Institute of Technology.
[8]
Arnellos A. and Moreno A. (2015, May). Multicellular agency: An organizational view. Biology and Philosophy, 30(3), 333–357. https://doi.org/10.1007/s10539-015-9484-0
[9]
Baluška F. and Levin M. (2016). On having No head: Cognition throughout biological systems. Frontiers in Psychology, 7, 902. https://doi.org/10.3389/fpsyg.2016.00902
[10]
Baluška F. and Reber A. S. (2021, Dec). Cellular and organismal agency - not based on genes: A comment on Baverstock. Progress in Biophysics and Molecular Biology, 167, 161–162. https://doi.org/10.1016/j.pbiomolbio.2021.11.001
[11]
Barandiaran X. E., Di Paolo E., and Rohde M. (2009, Oct). Defining agency: Individuality, normativity, asymmetry, and spatio-temporality in action. Adaptive Behavior, 17(5), 367–386. https://doi.org/10.1177/1059712309343819
[12]
Beer R. D. (1995, Jan). A dynamical-systems perspective on agent environment interaction. Artificial Intelligence, 72(1-2), 173–215. https://doi.org/10.1016/0004-3702(94)00005-l
[13]
Beer R. D. (2004). Autopoiesis and cognition in the game of life. Artificial Life, 10(3), 309–326. https://doi.org/10.1162/1064546041255539
[14]
Beer R. D. (2014, Spring). The cognitive domain of a glider in the game of life. Artificial Life, 20(2), 183–206. https://doi.org/10.1162/ARTL_a_00125
[15]
Beer R. D. (2015, Winter). Characterizing autopoiesis in the game of life. Artificial Life, 21(1), 1–19. https://doi.org/10.1162/ARTL_a_00143
[16]
Beer R. D. and Williams P. L. (2015, Jan). Information processing and dynamics in minimally cognitive agents. Cognitive Science, 39(1), 1–38. https://doi.org/10.1111/cogs.12142
[17]
Bessonov N., Levin M., Morozova N., Reinberg N., Tosenberger A., and Volpert V. (2015, Dec). Target morphology and cell memory: A model of regenerative pattern formation. Neural regeneration research, 10(12), 1901–1905. https://doi.org/10.4103/1673-5374.165216
[18]
Birnbaum K. D. and Sanchez Alvarado A. (2008, Feb 22). Slicing across kingdoms: Regeneration in plants and animals. Cell, 132(4), 697–710. https://doi.org/10.1016/j.cell.2008.01.040
[19]
Biswas S., Clawson W., and Levin M. (2022, Dec 23). Learning in transcriptional network models: Computational discovery of pathway-level memory and effective interventions. International Journal of Molecular Sciences, 24(1), 285. https://doi.org/10.3390/ijms24010285
[20]
Biswas S., Manicka S., Hoel E., and Levin M. (2021, 2021/02/01/). Gene regulatory networks exhibit several kinds of memory: Quantification of memory in biological and random transcriptional networks. iScience, 24(3), 102131. https://doi.org/10.1016/j.isci.2021.102131
[21]
Blackiston D., Kriegman S., Bongard J., and Levin M. (2023, Aug). Biological robots: Perspectives on an emerging interdisciplinary field. Soft Robotics, 10(4), 674–686. https://doi.org/10.1089/soro.2022.0142
[22]
Boisseau R. P., Vogel D., and Dussutour A. (2016, Apr 27). Habituation in non-neural organisms: Evidence from slime moulds. Proceedings. Biological sciences, 283(1829), 20160446. https://doi.org/10.1098/rspb.2016.0446
[23]
Bongard J. and Levin M. (2021, 2021-March-16). Living things are not (20th century) machines: Updating mechanism metaphors in light of the modern science of machine behavior. Frontiers in Ecology and Evolution, 9, 650726. https://doi.org/10.3389/fevo.2021.650726
[24]
Bongard J. and Levin M. (2023, Mar 8). There’s plenty of room right here: Biological systems as evolved, overloaded, multi-scale machines. Biomimetics, 8(1), 110. https://doi.org/10.3390/biomimetics8010110
[25]
Boussard A., Delescluse J., Perez-Escudero A., and Dussutour A. (2019, Jun 10). Memory inception and preservation in slime moulds: The quest for a common mechanism. Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences, 374(1774), 20180368. https://doi.org/10.1098/rstb.2018.0368
[26]
Brancazio N., Segundo-Ortin M., and McGivern P. (2019, Dec). Approaching minimal cognition: Introduction to the special issue. Adaptive Behavior, 28(6), 401–405. https://doi.org/10.1177/1059712319891620
[27]
Brown A. D., Mills R., Dugan K. J., Reeve J. S., and Furber S. B. (2015, 2015/07/01). Reliable computation with unreliable computers. IET Computers & Digital Techniques, 9(4), 230–237. https://doi.org/10.1049/iet-cdt.2014.0110
[28]
Bugaj L. J., O’Donoghue G. P., and Lim W. A. (2017, Jan 2). Interrogating cellular perception and decision making with optogenetic tools. The Journal of Cell Biology, 216(1), 25–28. https://doi.org/10.1083/jcb.201612094
[29]
Čejková J., Banno T., Hanczyc M. M., and Štěpánek F. (2017). Droplets as liquid robots. Artificial Life, 23(4), 528–549. https://doi.org/10.1162/ARTL_a_00243
[30]
Clawson W. P. and Levin M. (2023). Endless forms most beautiful 2.0: Teleonomy and the bioengineering of chimaeric and synthetic organisms. Biological Journal of the Linnean Society, 139(4), 457–486. https://doi.org/10.1093/biolinnean/blac073
[31]
Csermely P., Kunsic N., Mendik P., Kerestély M., Faragó T., Veres D. V., and Tompa P. (2020, Apr). Learning of signaling networks: Molecular mechanisms. Trends in Biochemical Sciences, 45(4), 284–294. https://doi.org/10.1016/j.tibs.2019.12.005
[32]
Dalle Nogare D. and Chitnis A. B. (2020, Apr). NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium. Seminars in Cell & Developmental Biology, 100, 186–198. https://doi.org/10.1016/j.semcdb.2019.12.015
[33]
Daly J., Casper D., Farooq M., James A., Khan A., Mulgrew P., Tyebkhan D., Vo B., and Rieffel J. (2023). Robustness for free: Quality-diversity driven discovery of agile soft robotic gaits. arXiv:2311.01245. https://ui.adsabs.harvard.edu/abs/2023arXiv231101245D
[34]
Davies J. and Levin M. (2023). Synthetic morphology with agential materials. Nature Reviews Bioengineering, 1(1), 46–59. https://doi.org/10.1038/s44222-022-00001-9
[35]
Davies J. A. and Glykofrydis F. (2020, Jun 30). Engineering pattern formation and morphogenesis. Biochemical Society Transactions, 48(3), 1177–1185. https://doi.org/10.1042/BST20200013
[36]
De Robertis E. M., Oliver G., and Wright C. V. (1989, Apr 21). Determination of axial polarity in the vertebrate embryo: Homeodomain proteins and homeogenetic induction. Cell, 57(2), 189–191. https://doi.org/10.1016/0092-8674(89)90954-9
[37]
Dine E., Gil A. A., Uribe G., Brangwynne C. P., and Toettcher J. E. (2018, Jun 27). Protein phase separation provides long-term memory of transient spatial stimuli. Cell systems, 6(6), 655–663.e5. https://doi.org/10.1016/j.cels.2018.05.002
[38]
Dörfler F., He Z., Belgioioso G., Bolognani S., Lygeros J., and Muehlebach M. (2024). Towards a systems theory of algorithms. arXiv:2401.14029. https://ui.adsabs.harvard.edu/abs/2024arXiv240114029D
[39]
Doursat R. and Sánchez C. (2014, Jun). Growing fine-grained multicellular robots. Soft Robotics, 1(2), 110–121. https://doi.org/10.1089/soro.2014.0014
[40]
Doursat R., Sayama H., and Michel O. (2013, Dec). A review of morphogenetic engineering. Natural Computing, 12(4), 517–535. https://doi.org/10.1007/s11047-013-9398-1
[41]
Dussutour A., Latty T., Beekman M., and Simpson S. J. (2010, Mar 9). Amoeboid organism solves complex nutritional challenges. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4607–4611. https://doi.org/10.1073/pnas.0912198107
[42]
Ebrahimkhani M. R. and Levin M. (2021, May 21). Synthetic living machines: A new window on life. iScience, 24(5), 102505. https://doi.org/10.1016/j.isci.2021.102505
[43]
Eldar A., Shilo B. Z., and Barkai N. (2004, Aug). Elucidating mechanisms underlying robustness of morphogen gradients. Current Opinion in Genetics & Development, 14(4), 435-439. https://doi.org/10.1016/j.gde.2004.06.009, https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15261661, https://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VS0-4CP18SN-3-3&_cdi=6248&_user=201547&_pii=S0959437X04000887&_origin=gateway&_coverDate=08%2F31%2F2004&_sk=999859995&view=c&wchp=dGLzVtb-zSkzk&md5=d6e08bd41324a5223103e57e666de609&ie=/sdarticle.pdf
[44]
Ellis G. F. R., Noble D., and O’Connor T. (2011, Feb 6). Top-down causation: An integrating theme within and across the sciences? Interface Focus, 2(1), 1–3. https://doi.org/10.1098/rsfs.2011.0110
[45]
Fan X. J., Sun M. M., Sun L. N., and Xie H. (2020, Jun). Ferrofluid droplets as liquid microrobots with multiple deformabilities. Advanced Functional Materials, 30(24), 2000138. https://doi.org/10.1002/adfm.202000138
[46]
Farinella-Ferruzza N. (1956). The transformation of a tail into a limb after xenoplastic transformation. Experientia, 12, 304–305. https://link.springer.com/article/10.1007/BF02159624
[47]
Fields C. (2014). Motion, identity and the bias toward agency. Frontiers in Human Neuroscience, 8, 597. https://doi.org/10.3389/fnhum.2014.00597
[48]
Fields C., Bischof J., and Levin M. (2020, Jan 1). Morphological coordination: A common ancestral function unifying neural and non-neural signaling. Physiology, 35(1), 16–30. https://doi.org/10.1152/physiol.00027.2019
[49]
Fields C. and Levin M. (2019, 2019/01/01). Somatic multicellularity as a satisficing solution to the prediction-error minimization problem. Communicative & Integrative Biology, 12(1), 119–132. https://doi.org/10.1080/19420889.2019.1643666
[50]
Fields C. and Levin M. (2020, Aug). Scale-free biology: Integrating evolutionary and developmental thinking. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 42(8), Article e1900228. https://doi.org/10.1002/bies.201900228
[51]
Fields C. and Levin M. (2022, Jun 12). Competency in navigating arbitrary spaces as an invariant for analyzing cognition in diverse embodiments. Entropy, 24(6), 819. https://doi.org/10.3390/e24060819
[52]
Fields C. and Levin M. (2023, Jul). Regulative development as a model for origin of life and artificial life studies. Biosystems, 229, 104927. https://doi.org/10.1016/j.biosystems.2023.104927
[53]
Frank S. A. (2013). Evolution of robustness and cellular stochasticity of gene expression. PLoS Biology, 11(6), Article e1001578. https://doi.org/10.1371/journal.pbio.1001578
[54]
Frank S. A. (2018, Sep 25). Measurement invariance explains the universal law of generalization for psychological perception. Proceedings of the National Academy of Sciences of the United States of America, 115(39), 9803–9806. https://doi.org/10.1073/pnas.1809787115
[55]
Frank S. A. (2019, May 7). Evolutionary design of regulatory control. II. Robust error-correcting feedback increases genetic and phenotypic variability. Journal of Theoretical Biology, 468, 72–81. https://doi.org/10.1016/j.jtbi.2019.02.012
[56]
Friston K., Levin M., Sengupta B., and Pezzulo G. (2015, Apr 6). Knowing one’s place: A free-energy approach to pattern regulation. Journal of the Royal Society, Interface, 12(105), 20141383. https://doi.org/10.1098/rsif.2014.1383
[57]
Friston K. J., Wiese W., and Hobson J. A. (2020, Apr 30). Sentience and the origins of consciousness: From cartesian duality to Markovian monism. Entropy, 22(5), 516. https://doi.org/10.3390/e22050516
[58]
Frith C. D. and Metzingher T. (2016). What’s the use of consciousness? How the stab of conscience made us really conscious. In Engel A. K., Friston K., and Kragic D. (Eds.), Where’s the action? The pragmatic turn in cognitive science (pp. 193–214). MIT Press.
[59]
Glen C. M., Kemp M. L., and Voit E. O. (2019, Mar). Agent-based modeling of morphogenetic systems: Advantages and challenges. PLoS Computational Biology, 15(3), Article e1006577. https://doi.org/10.1371/journal.pcbi.1006577
[60]
Goldstein A. (2021). Algorithms are the matter. https://www.adamjuliangoldstein.com/blog/algorithms-are-the-matter/
[61]
Gumuskaya G., Srivastava P., Cooper B. G., Lesser H., Semegran B., Garnier S., and Levin M. (2024). Motile living biobots self-construct from adult human somatic progenitor seed cells. Advanced Science, 11(4), Article e2303575. https://doi.org/10.1002/advs.202303575
[62]
Hanczyc M. M. (2014, Dec 17). Droplets: Unconventional protocell model with life-like dynamics and room to grow. Life, 4(4), 1038–1049. https://doi.org/10.3390/life4041038
[63]
Ho C. and Morsut L. (2021, May 11). Novel synthetic biology approaches for developmental systems. Stem Cell Reports, 16(5), 1051–1064. https://doi.org/10.1016/j.stemcr.2021.04.007
[64]
Izquierdo E. J., Williams P. L., and Beer R. D. (2015). Information flow through a model of the C. Elegans Klinotaxis circuit. PLoS One, 10(10), Article e0140397. https://doi.org/10.1371/journal.pone.0140397
[65]
James S., Jennings G., Kwon Y. M., Stammnitz M., Fraik A., Storfer A., Comte S., Pemberton D., Fox S., Brown B., Pye R., Woods G., Lyons B., Hohenlohe P. A., McCallum H., Siddle H., Thomas F., Ujvari B., Murchison E. P., Jones M., and Hamede R. (2019, Oct). Tracing the rise of malignant cell lines: Distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evolutionary applications, 12(9), 1772–1780. https://doi.org/10.1111/eva.12831
[66]
James W. (1890). The principles of psychology. H. Holt and Company. https://catalog.hathitrust.org/api/volumes/oclc/1862859.htmlHathiTrust
[67]
Jennings H. S. (1906). Behavior of the lower organisms. The Columbia University Press, The Macmillan Company, Agents; etc.
[68]
Kamm R. D., Bashir R., Arora N., Dar R. D., Gillette M. U., Griffith L. G., Kemp M. L., Kinlaw K., Levin M., Martin A. C., McDevitt T. C., Nerem R. M., Powers M. J., Saif T. A., Sharpe J., Takayama S., Takeuchi S., Weiss R., Ye K., Yevick H. G., and Zaman M. H. (2018, Dec). Perspective: The promise of multi-cellular engineered living systems. APL Bioengineering, 2(4), 040901. https://doi.org/10.1063/1.5038337
[69]
Katz Y. and Fontana W. (2022, Apr 29). Probabilistic inference with polymerizing biochemical circuits. Entropy, 24(5), 629. https://doi.org/10.3390/e24050629
[70]
Katz Y., Goodman N. D., Kersting K., Kemp C., and Tenenbaum J. B. (2008). Modeling semantic cognition as logical dimensionality reduction. Proceedings of the Annual Meeting of the Cognitive Science Society, 30. Retrieved from https://escholarship.org/uc/item/50r1c7qh
[71]
Katz Y. and Springer M. (2016). Probabilistic adaptation in changing microbial environments. PeerJ, 4, Article e2716. https://doi.org/10.7717/peerj.2716
[72]
Katz Y., Springer M., and Fontana W. (2018). Embodying probabilistic inference in biochemical circuits. arXiv:1806.10161. https://ui.adsabs.harvard.edu/abs/2018arXiv180610161K
[73]
Kauffman S. and Clayton P. (2006, Sep). On emergence, agency, and organization. Biology and Philosophy, 21(4), 501–521. https://doi.org/10.1007/s10539-005-9003-9
[74]
Kauffman S. A. (1993). The origins of order : Self organization and selection in evolution. Oxford University Press.
[75]
Keijzer F., van Duijn M., and Lyon P. (2013, Apr). What nervous systems do: Early evolution, input-output, and the skin brain thesis. Adaptive Behavior, 21(2), 67–85. https://doi.org/10.1177/1059712312465330
[76]
Kelty-Stephen D. and Dixon J. A. (2012). When physics is not “just physics”: Complexity science invites new measurement frames for exploring the physics of cognitive and biological development. Critical Reviews in Biomedical Engineering, 40(6), 471–483. https://doi.org/10.1615/critrevbiomedeng.2013006693
[77]
Khademi M., Taghizadeh Ghavamabadi R., Taghavi M. M., Shabanizadeh A., Shariati-Kohbanani M., Hassanipour M., and Taghipour Z. (2019, Jun). The effects of fluoxetine on the human adipose-derived stem cell proliferation and differentiation. Fundamental & Clinical Pharmacology, 33(3), 286–295. https://doi.org/10.1111/fcp.12426
[78]
Koseska A. and Bastiaens P. I. (2017, Mar 1). Cell signaling as a cognitive process. The EMBO Journal, 36(5), 568–582. https://doi.org/10.15252/embj.201695383
[79]
Krist K. T., Sen A., and Noid W. G. (2021, Oct 28). A simple theory for molecular chemotaxis driven by specific binding interactions. The Journal of Chemical Physics, 155(16), 164902. https://doi.org/10.1063/5.0061376
[80]
Kuchling F., Fields C., and Levin M. (2022, May). Metacognition as a consequence of competing evolutionary time scales. Entropy, 24(5), 601. https://doi.org/10.3390/e24050601
[81]
Lagasse E. and Levin M. (2023, Sep). Future medicine: From molecular pathways to the collective intelligence of the body. Trends in Molecular Medicine, 29(9), 687–710. https://doi.org/10.1016/j.molmed.2023.06.007
[82]
Lamport L., Shostak R., and Pease M. (1982). The byzantine generals problem. ACM Transactions on Programming Languages and Systems, 4(3), 382–401. https://doi.org/10.1145/357172.357176
[83]
Levin M. (2019, 2019-December-13). The computational boundary of a “self”: Developmental bioelectricity drives multicellularity and scale-free cognition. Frontiers in Psychology, 10(2688), 2688. https://doi.org/10.3389/fpsyg.2019.02688
[84]
Levin M. (2021). Life, death, and self: Fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochemical and Biophysical Research Communications, 564, 114–133. https://doi.org/10.1016/j.bbrc.2020.10.077
[85]
Levin M. (2022). Technological approach to mind everywhere: An experimentally-grounded framework for understanding diverse bodies and minds. Frontiers in Systems Neuroscience, 16, 768201. https://doi.org/10.3389/fnsys.2022.768201
[86]
Levin M. (2023a, May 19). Bioelectric networks: The cognitive glue enabling evolutionary scaling from physiology to mind. Animal Cognition, 26(6), 1865–1891. https://doi.org/10.1007/s10071-023-01780-3
[87]
Levin M. (2023b). Collective intelligence of morphogenesis as a teleonomic process. In Corning P. A., Kauffman S. A., Noble D., Shapiro J. A., Vane-Wright R. I., and Pross A. (Eds.), Evolution “on purpose”: Teleonomy in living systems (pp. 175–198). MIT Press. https://doi.org/10.7551/mitpress/14642.003.0013
[88]
Levin M. (2023c, May 8). Darwin’s agential materials: Evolutionary implications of multiscale competency in developmental biology. Cellular and Molecular Life Sciences: CMLS, 80(6), 142. https://doi.org/10.1007/s00018-023-04790-z
[89]
Levin M., Pietak A. M., and Bischof J. (2019, Mar). Planarian regeneration as a model of anatomical homeostasis: Recent progress in biophysical and computational approaches. Seminars in Cell & Developmental Biology, 87, 125–144. https://doi.org/10.1016/j.semcdb.2018.04.003
[90]
Lobo D., Beane W. S., and Levin M. (2012, Apr). Modeling planarian regeneration: A primer for reverse-engineering the worm. PLoS Computational Biology, 8(4), Article e1002481. https://doi.org/10.1371/journal.pcbi.1002481
[91]
Lyon P. (2006, Mar). The biogenic approach to cognition. Cognitive Processing, 7(1), 11–29. https://doi.org/10.1007/s10339-005-0016-8
[92]
Lyon P. (2015). The cognitive cell: Bacterial behavior reconsidered. Frontiers in Microbiology, 6, 264. https://doi.org/10.3389/fmicb.2015.00264
[93]
Lyon P. and Kuchling F. (2021, Mar 15). Valuing what happens: A biogenic approach to valence and (potentially) affect. Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences, 376(1820), 20190752. https://doi.org/10.1098/rstb.2019.0752
[94]
Manicka S. and Harvey I. (2008). ‘Psychoanalysis’ of a minimal agent. Artificial Life XI.
[95]
Mathews J., Chang A. J., Devlin L., and Levin M. (2023, May 12). Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine. Patterns (N Y), 4(5), 100737. https://doi.org/10.1016/j.patter.2023.100737
[96]
McGivern P. (2019, Dec 27). Active materials: Minimal models of cognition? Adaptive Behavior, 28(6), 441–451. https://doi.org/10.1177/1059712319891742
[97]
McMillen P., Oudin M. J., Levin M., and Payne S. L. (2021). Beyond neurons: Long distance communication in development and cancer. Frontiers in Cell and Developmental Biology, 9, 739024. https://doi.org/10.3389/fcell.2021.739024
[98]
McShea D. W. (2012, Sep). Upper-directed systems: A new approach to teleology in biology. Biology and Philosophy, 27(5), 663–684. https://doi.org/10.1007/s10539-012-9326-2
[99]
McShea D. W. (2013, Dec). Machine wanting. Studies in History and Philosophy of Biological and Biomedical Sciences, 44(4 Pt B), 679–687. https://doi.org/10.1016/j.shpsc.2013.05.015
[100]
McShea D. W. (2016, Aug). Freedom and purpose in biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 58, 64–72. https://doi.org/10.1016/j.shpsc.2015.12.002
[101]
McShea D. W. and Hordijk W. (2013, Dec). Complexity by subtraction. Evolutionary Biology, 40(4), 504–520. https://doi.org/10.1007/s11692-013-9227-6
[102]
Meredith C. H., Moerman P. G., Groenewold J., Chiu Y. J., Kegel W. K., van Blaaderen A., and Zarzar L. D. (2020, Dec). Predator-prey interactions between droplets driven by non-reciprocal oil exchange. Nature Chemistry, 12(12), 1136–1142. https://doi.org/10.1038/s41557-020-00575-0
[103]
Morgan C. L. (1894). Other minds than ours. In An introduction to comparative psychology (pp. 36–59). Walter Scott, Ltd.
[104]
Nakagaki T. (2001). Smart behavior of true slime mold in a labyrinth. Research in Microbiology, 152(9), 767-770. https://doi.org/10.1016/s0923-2508(01)01259-1, https://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6VN3-447D80W-1-1&_cdi=6167&_user=201547&_pii=S0923250801012591&_origin=gateway&_coverDate=11%2F30%2F2001&_sk=998479990&view=c&wchp=dGLbVzz-zSkWA&md5=245e2f34026eb43e8432d9e2388d17dc&ie=/sdarticle.pdf
[105]
Nakagaki T. and Guy R. D. (2007, Dec 11). Intelligent behaviors of amoeboid movement based on complex dynamics of soft matter. Soft Matter, 4(1), 57–67. https://doi.org/10.1039/b706317m
[106]
Nanos V. and Levin M. (2022, Mar). Multi-scale Chimerism: An experimental window on the algorithms of anatomical control. Cells & Development, 169, 203764. https://doi.org/10.1016/j.cdev.2021.203764
[107]
Newgreen D. F., Dufour S., Howard M. J., and Landman K. A. (2013, Oct 1). Simple rules for a “simple” nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation. Developmental Biology, 382(1), 305–319. https://doi.org/10.1016/j.ydbio.2013.06.029
[108]
Newman S. A. (2019a, Aug). Inherency and homomorphy in the evolution of development. Current Opinion in Genetics & Development, 57, 1–8. https://doi.org/10.1016/j.gde.2019.05.006
[109]
Newman S. A. (2019b). Inherency of form and function in animal development and evolution. Frontiers in Physiology, 10, 702. https://doi.org/10.3389/fphys.2019.00702
[110]
Newman S. A. (2023). Form, function, agency: Sources of natural purpose in animal evolution. In Corning P., Kauffman S. A., Noble D., Shapiro J., and Vane-Wright R. (Eds.), Evolution ‘on purpose’: Teleonomy in living systems (pp. 199–220). MIT Press. https://doi.org/10.7551/mitpress/14642.003.0014
[111]
Niklas K. J., Wayne R., Benítez M., and Newman S. A. (2019, May). Polarity, planes of cell division, and the evolution of plant multicellularity. Protoplasma, 256(3), 585–599. https://doi.org/10.1007/s00709-018-1325-y
[112]
Noble D. (2008a, Jan). Claude Bernard, the first systems biologist, and the future of physiology. Experimental Physiology, 93(1), 16–26. https://doi.org/10.1113/expphysiol.2007.038695
[113]
Noble D. (2008b, Sep 13). Genes and causation. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366(1878), 3001–3015. https://doi.org/10.1098/rsta.2008.0086
[114]
Noble D. (2009, May). Systems biology, the physiome project and oriental medicine. The Journal of Physiological Sciences: JPS, 59(3), 249–251. https://doi.org/10.1007/s12576-009-0021-2
[115]
Noble D. (2010, Mar 13). Biophysics and systems biology. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 368(1914), 1125–1139. https://doi.org/10.1098/rsta.2009.0245
[116]
Noble D. (2011, May). The aims of systems biology: Between molecules and organisms. Pharmacopsychiatry, 44(Suppl 1), S9–S14. https://doi.org/10.1055/s-0031-1271703
[117]
Noble D. (2012, Feb 6). A theory of biological relativity: No privileged level of causation. Interface Focus, 2(1), 55–64. https://doi.org/10.1098/rsfs.2011.0067
[118]
Noble D. (2021, Jul). The role of stochasticity in biological communication processes. Progress in Biophysics and Molecular Biology, 162, 122–128. https://doi.org/10.1016/j.pbiomolbio.2020.09.008
[119]
Noble R. and Noble D. (2018, Oct). Harnessing stochasticity: How do organisms make choices? Chaos, 28(10), 106309. https://doi.org/10.1063/1.5039668
[120]
Oakey J. and Gatlin J. C. (2018, Aug 1). Microfluidic encapsulation of demembranated sperm nuclei in Xenopus egg extracts. Cold Spring Harbour Protocols, 2018(8), 601–606. https://doi.org/10.1101/pdb.prot102913
[121]
Pascalie J., Potier M., Kowaliw T., Giavitto J. L., Michel O., Spicher A., and Doursat R. (2016, Aug 19). Developmental design of synthetic bacterial architectures by morphogenetic engineering. ACS Synthetic Biology, 5(8), 842–861. https://doi.org/10.1021/acssynbio.5b00246
[122]
Pezzulo G. and Levin M. (2015, Dec). Re-Membering the body: Applications of computational neuroscience to the top-down control of regeneration of limbs and other complex organs. Integrative Biology: Quantitative Biosciences from Nano to Macro, 7(12), 1487–1517. https://doi.org/10.1039/c5ib00221d
[123]
Pezzulo G. and Levin M. (2016, Nov). Top-down models in biology: Explanation and control of complex living systems above the molecular level. Journal of the Royal Society, Interface, 13(124), 20160555. https://doi.org/10.1098/rsif.2016.0555
[124]
Pinet K., Deolankar M., Leung B., and McLaughlin K. A. (2019, Jul 22). Adaptive correction of craniofacial defects in pre-metamorphic Xenopus laevis tadpoles involves thyroid hormone-independent tissue remodeling. Development, 146(14), dev175893. https://doi.org/10.1242/dev.175893
[125]
Pinet K. and McLaughlin K. A. (2019, Jul 15). Mechanisms of physiological tissue remodeling in animals: Manipulating tissue, organ, and organism morphology. Developmental Biology, 451(2), 134–145. https://doi.org/10.1016/j.ydbio.2019.04.001
[126]
Points L. J., Taylor J. W., Grizou J., Donkers K., and Cronin L. (2018, Jan 30). Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior. Proceedings of the National Academy of Sciences of the United States of America, 115(5), 885–890. https://doi.org/10.1073/pnas.1711089115
[127]
Prokopenko M., Boschetti F., and Ryan A. J. (2009, Sep-Oct). An information-theoretic primer on complexity, self-organization, and emergence. Complexity, 15(1), 11–28. https://doi.org/10.1002/cplx.20249
[128]
Qiao Y., Li M., Booth R., and Mann S. (2017, Feb). Predatory behaviour in synthetic protocell communities. Nature Chemistry, 9(2), 110–119. https://doi.org/10.1038/nchem.2617
[129]
Rahwan I., Cebrian M., Obradovich N., Bongard J., Bonnefon J. F., Breazeal C., Crandall J. W., Christakis N. A., Couzin I. D., Jackson M. O., Jennings N. R., Kamar E., Kloumann I. M., Larochelle H., Lazer D., McElreath R., Mislove A., Parkes D. C., Pentland A., and Wellman M. (2019, Apr). Machine behaviour. Nature, 568(7753), 477–486. https://doi.org/10.1038/s41586-019-1138-y
[130]
Rankin H. (2015). Transgenic Xenopus Laevis (African clawed toad) tadpole head expressing green neurons. Nikonsmallworld. https://www.nikonsmallworld.com/galleries/2015-photomicrography-competition/transgenic-xenopus-laevis-tadpole-head-expressing-green-neurons
[131]
Raup D. M. and Michelson A. (1965, Mar 12). Theoretical morphology of the coiled shell. Science, 147(3663), 1294–1295. https://doi.org/10.1126/science.147.3663.1294
[132]
Reid C. R., Beekman M., Latty T., and Dussutour A. (2013, Jul-Aug). Amoeboid organism uses extracellular secretions to make smart foraging decisions. Behavioral Ecology, 24(4), 812–818. https://doi.org/10.1093/beheco/art032
[133]
Reid C. R., Latty T., Dussutour A., and Beekman M. (2012, Oct 23). Slime mold uses an externalized spatial “memory” to navigate in complex environments. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17490–17494. https://doi.org/10.1073/pnas.1215037109
[134]
Repp B. H. and Knoblich G. (2007, Apr). Toward a psychophysics of agency: Detecting gain and loss of control over auditory action effects. Journal of Experimental Psychology: Human Perception and Performance, 33(2), 469–482. https://doi.org/10.1037/0096-1523.33.2.469
[135]
Rosenblueth A., Wiener N., and Bigelow J. (1943). Behavior, purpose, and teleology. Philosophy of Science, 10(1), 18-24. https://doi.org/10.1086/286788, https://www.jstor.org/stable/184878
[136]
Rouleau N. and Levin M. (2023, Nov). The multiple realizability of sentience in living systems and beyond. eNeuro, 10(11). https://doi.org/10.1523/ENEURO.0375-23.2023
[137]
Santorelli M., Lam C., and Morsut L. (2019, Oct). Synthetic development: Building mammalian multicellular structures with artificial genetic programs. Current Opinion in Biotechnology, 59, 130–140. https://doi.org/10.1016/j.copbio.2019.03.016
[138]
Serwane F., Mongera A., Rowghanian P., Kealhofer D. A., Lucio A. A., Hockenbery Z. M., and Campàs O. (2017, Feb). In vivo quantification of spatially varying mechanical properties in developing tissues. Nature Methods, 14(2), 181–186. https://doi.org/10.1038/nmeth.4101
[139]
Shin Y., Berry J., Pannucci N., Haataja M. P., Toettcher J. E., and Brangwynne C. P. (2017, Jan 12). Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell, 168(1-2), 159–171.e14. https://doi.org/10.1016/j.cell.2016.11.054
[140]
Shreesha L. and Levin M. (2023, Jan 9). Cellular competency during development alters evolutionary dynamics in an artificial embryogeny model. Entropy, 25(1), 131. https://doi.org/10.3390/e25010131
[141]
Stone J. R. (1997, May). The spirit of D’arcy Thompson dwells in empirical morphospace. Mathematical Biosciences, 142(1), 13–30. https://doi.org/10.1016/s0025-5564(96)00186-1
[142]
Sultan S. E., Moczek A. P., and Walsh D. (2022, Jan). Bridging the explanatory gaps: What can we learn from a biological agency perspective? BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 44(1), Article e2100185. https://doi.org/10.1002/bies.202100185
[143]
Suzuki K., Miyazaki M., Takagi J., Itabashi T., and Ishiwata S. (2017, Mar 14). Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow. Proceedings of the National Academy of Sciences of the United States of America, 114(11), 2922–2927. https://doi.org/10.1073/pnas.1616001114
[144]
Teague B. P., Guye P., and Weiss R. (2016, Sep 1). Synthetic morphogenesis. Cold Spring Harbor Perspectives in Biology, 8(9). a023929, https://doi.org/10.1101/cshperspect.a023929
[145]
Tero A., Kobayashi R., and Nakagaki T. (2007, Feb 21). A mathematical model for adaptive transport network in path finding by true slime mold. Journal of Theoretical Biology, 244(4), 553–564. https://doi.org/10.1016/j.jtbi.2006.07.015
[146]
Thorne B. C., Bailey A. M., DeSimone D. W., and Peirce S. M. (2007, Dec). Agent-based modeling of multicell morphogenic processes during development. Birth Defects Research, Part C: Embryo Today--Reviews, 81(4), 344–353. https://doi.org/10.1002/bdrc.20106
[147]
Toda S., Blauch L. R., Tang S. K. Y., Morsut L., and Lim W. A. (2018, Jul 13). Programming self-organizing multicellular structures with synthetic cell-cell signaling. Science, 361(6398), 156–162. https://doi.org/10.1126/science.aat0271
[148]
Tononi G. and Koch C. (2015, May 19). Consciousness: Here, there and everywhere? [Review]. Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences, 370(1668). 20140167, https://doi.org/10.1098/rstb.2014.0167
[149]
Ulanowicz R. E. (2007). Emergence, naturally. Zygon, 42(4), 945–960. https://doi.org/10.1111/j.1467-9744.2007.00882.x
[150]
Vallverdú J., Castro O., Mayne R., Talanov M., Levin M., Baluška F., Gunji Y., Dussutour A., Zenil H., and Adamatzky A. (2018, Mar). Slime mould: The fundamental mechanisms of biological cognition. Biosystems, 165, 57–70. https://doi.org/10.1016/j.biosystems.2017.12.011
[151]
Vandenberg L. N., Adams D. S., and Levin M. (2012, May). Normalized shape and location of perturbed craniofacial structures in the Xenopus tadpole reveal an innate ability to achieve correct morphology. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 241(5), 863–878. https://doi.org/10.1002/dvdy.23770
[152]
Vogel D. and Dussutour A. (2016, Dec 28). Direct transfer of learned behaviour via cell fusion in non-neural organisms. Proceedings. Biological sciences, 283(1845). 20162382, https://doi.org/10.1098/rspb.2016.2382
[153]
Vogel D., Dussutour A., and Deneubourg J. L. (2018, Dec 21). Symmetry breaking and inter-clonal behavioural variability in a slime mould. Biology Letters, 14(12), 20180504. https://doi.org/10.1098/rsbl.2018.0504
[154]
Vogel D., Nicolis S. C., Perez-Escudero A., Nanjundiah V., Sumpter D. J., and Dussutour A. (2015, Nov 22). Phenotypic variability in unicellular organisms: From calcium signalling to social behaviour. Proceedings. Biological Sciences, 282(1819). 20152322, https://doi.org/10.1098/rspb.2015.2322
[155]
von Neumann J. (1952). Probabilistic logics and the synthesis of reliable organisms from unreliable components. In Shannon C. E. and McCarthy J. (Eds.), Automata Studies (pp. 43–98). Princeton University Press.
[156]
Wang D. (2014). Computing with unreliable resources: Design, analysis and algorithms. Massachusetts Institute of Technology. https://dspace.mit.edu/handle/1721.1/89846?show=full
[157]
Watson R. A., Buckley C. L., Mills R., and Davies A. (2010). Associative memory in gene regulation networks. Artificial Life Conference XII.
[158]
Zabzina N., Dussutour A., Mann R. P., Sumpter D. J., and Nicolis S. C. (2014, Dec). Symmetry restoring bifurcation in collective decision-making. PLoS Computational Biology, 10(12), Article e1003960. https://doi.org/10.1371/journal.pcbi.1003960
[159]
Zampetaki A. V., Liebchen B., Ivlev A. V., and Lowen H. (2021, Dec 7). Collective self-optimization of communicating active particles. Proceedings of the National Academy of Sciences of the United States of America, 118(49). Article e2111142118, https://doi.org/10.1073/pnas.2111142118
Index Terms
- Classical sorting algorithms as a model of morphogenesis: Self-sorting arrays reveal unexpected competencies in a minimal model of basal intelligence
Index terms have been assigned to the content through auto-classification.
Recommendations
A model for motor endplate morphogenesis: Diffusible morphogens, transmembrane signaling, and compartmentalized gene expression
A mathematical model for the formation and maintenance of synaptic contacts at the motor endplate is proposed. It is based on diffusion between sarcoplasmic nuclei of limiting amounts of a morphogen substance. The morphogen is postulated to act on ...
2-Stack Sorting is Polynomial
In this article, we give a polynomial algorithm to decide whether a given permutation ź is sortable with two stacks in series. This is indeed a longstanding open problem which was first introduced by Knuth ([1973]). He introduced the stack sorting ...
Comments
Information & Contributors
Information
Published In
© The Author(s) 2024.
Publisher
Sage Publications, Inc.
United States
Publication History
Published: 01 February 2025
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025