Affective computing is a nascent field situated at the intersection of artificial intelligence with social and behavioral science. It studies how human emotions are perceived and expressed, which then informs the design of intelligent agents and systems that can either mimic this behavior to improve their intelligence or incorporate such knowledge to effectively understand and communicate with their human collaborators. Affective computing research has recently seen significant advances and is making a critical transformation from exploratory studies to real-world applications in the emerging research area known as applied affective computing.
This book offers readers an overview of the state-of-the-art and emerging themes in affective computing, including a comprehensive review of the existing approaches to affective computing systems and social signal processing. It provides in-depth case studies of applied affective computing in various domains, such as social robotics and mental well-being. It also addresses ethical concerns related to affective computing and how to prevent misuse of the technology in research and applications. Further, this book identifies future directions for the field and summarizes a set of guidelines for developing next-generation affective computing systems that are effective, safe, and human-centered.
For researchers and practitioners new to affective computing, this book will serve as an introduction to the field to help them in identifying new research topics or developing novel applications. For more experienced researchers and practitioners, the discussions in this book provide guidance for adopting a human-centered design and development approach to advance affective computing
Chapters
- M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. 2016. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. 308–318. DOI: .Google Scholar
Digital Library
- P. Abbeel and A. Y. Ng. 2004. Apprenticeship learning via inverse reinforcement learning. In Proceedings of the Twenty-First International Conference on Machine Learning. 1. Google Scholar
Digital Library
- J. Abdi, A. Al-Hindawi, T. Ng, and M. P. Vizcaychipi. 2018. Scoping review on the use of socially assistive robot technology in elderly care. BMJ Open 8, 2, e018815. DOI: .Google Scholar
Cross Ref
- A. Abdul, J. Vermeulen, D. Wang, B. Y. Lim, and M. Kankanhalli. 2018. Trends and trajectories for explainable, accountable and intelligible systems: An HCI research agenda. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 1–18. DOI: .Google Scholar
Digital Library
- S. Abdullah, E. L. Murnane, M. Matthews, M. Kay, J. A. Kientz, G. Gay, and T. Choudhury. 2016. Cognitive rhythms: Unobtrusive and continuous sensing of alertness using a mobile phone. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp’16. Association for Computing Machinery, New York, NY, 178–189. ISBN 9781450344616. DOI: .Google Scholar
Digital Library
- E. Acar, F. Hopfgartner, and S. Albayrak. 2014. Understanding affective content of music videos through learned representations. In International Conference on Multimedia Modeling. Springer, 303–314. DOI: .Google Scholar
Digital Library
- C. Adam and B. Gaudou. 2016. BDI agents in social simulations: A survey. Knowl. Eng. Rev. 31, 3, 207–238. DOI: .Google Scholar
Cross Ref
- N. R. Adam and J. C. Worthmann. 1989. Security-control methods for statistical databases: A comparative study. ACM Comput. Surv. 21, 4, 515–556. DOI: .Google Scholar
Digital Library
- A. T. Adams, J. Costa, M. F. Jung, and T. Choudhury. 2015. Mindless computing: Designing technologies to subtly influence behavior. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 719–730. DOI: .Google Scholar
Digital Library
- F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller. 2015. Smart homes that monitor breathing and heart rate. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI’15. Association for Computing Machinery, New York, NY, 837–846. ISBN 9781450331456. DOI: .Google Scholar
Digital Library
- R. Adolphs and D. J. Anderson. 2018. The Neuroscience of Emotion: A New Synthesis. Princeton University Press. DOI: .Google Scholar
Cross Ref
- R. Adolphs and D. Andler. 2018. Investigating emotions as functional states distinct from feelings. Emot. Rev. 10, 3, 191–201. DOI: .Google Scholar
Cross Ref
- Affectiva. 2020. Affectiva. https://www.affectiva.com/.Google Scholar
- S. Afzal and P. Robinson. 2014. Emotion data collection and its implications for affective computing. In The Oxford Handbook of Affective Computing. DOI: .Google Scholar
Cross Ref
- R. Agrawal and R. Srikant. 2000. Privacy-preserving data mining. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. 439–450. Google Scholar
Digital Library
- A. Aguilera, E. Bruehlman-Senecal, O. Demasi, and P. Avila. 2017. Automated text messaging as an adjunct to cognitive behavioral therapy for depression: A clinical trial. J. Med. Internet Res. 19, 5, e148. DOI: .Google Scholar
Cross Ref
- N. Aharony, W. Pan, C. Ip, I. Khayal, and A. Pentland. December. 2011. Social fMRI: Investigating and shaping social mechanisms in the real world. Pervasive Mob. Comput. 7, 6, 643–659. .Google Scholar
Digital Library
- M. B. Akçay and K. Oğuz. 2020. Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers. Speech Commun. 116, 56–76. DOI: .Google Scholar
Digital Library
- L. Al-Barrak, E. Kanjo, and E. M. Younis. 2017. NeuroPlace: Categorizing urban places according to mental states. PLoS One 12, 9. DOI: .Google Scholar
Cross Ref
- L. Al-Husain, E. Kanjo, and A. Chamberlain. September. 2013. Sense of space: Mapping physiological emotion response in urban space. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, UbiComp’13. Adjunct. Association for Computing Machinery, Zurich, Switzerland, 1321–1324. ISBN 978-1-4503-2215-7. DOI: .Google Scholar
Digital Library
- F. Q. Al-Khalidi, R. Saatchi, D. Burke, H. Elphick, and S. Tan. 2011. Respiration rate monitoring methods: A review. Pediatr. Pulmonol. 46, 6, 523–529. DOI: . ISSN 87556863.Google Scholar
Cross Ref
- F. Alam and G. Riccardi. 2014. Predicting personality traits using multimodal information. In Proceedings of the 2014 ACM Multimedia on Workshop on Computational Personality Recognition. ACM, 15–18. DOI: .Google Scholar
Digital Library
- S. M. Alarcao and M. J. Fonseca. July. 2019. Emotions recognition using EEG signals: A survey. IEEE Trans. Affect. Comput. 10, 3, 374–393. ISSN 1949-3045. https://ieeexplore.ieee.org/document/7946165/. DOI: .Google Scholar
Digital Library
- M. R. Ali, T. Sen, B. Kane, S. Bose, T. Carroll, R. Epstein, L. K. Schubert, and E. Hoque. 2021. Novel computational linguistic measures, dialogue system and the development of SOPHIE: Standardized online patient for healthcare interaction education. IEEE Trans. Affect. Comput. DOI: .Google Scholar
Digital Library
- A. Aljanaki, Y.-H. Yang, and M. Soleymani. March. 2017. Developing a benchmark for emotional analysis of music. PLoS One 12, 3, e0173392. ISSN 1932-6203. https://dx.plos.org/10.1371/journal.pone.0173392. DOI: .Google Scholar
Cross Ref
- M. Allen. 2017. The SAGE Encyclopedia of Communication Research Methods. SAGE Publications. DOI: .Google Scholar
Cross Ref
- C. O. Alm, D. Roth, and R. Sproat. 2005. Emotions from text: Machine learning for text-based emotion prediction. In HLT/EMNLP 2005—Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference. DOI: .Google Scholar
Digital Library
- T. R. Almaev, A. Yüce, A. Ghitulescu, and M. F. Valstar. 2013. Distribution-based iterative pairwise classification of emotions in the wild using LGBP-TOP. In Proceedings of the 15th ACM on International Conference on Multimodal Interaction. 535–542. DOI: .Google Scholar
Digital Library
- I. Alvarez, J. Healey, and E. Lewis. 2019. The SKYNIVI experience: Evoking startle and frustration in dyads and single drivers. In 2019 IEEE Intelligent Vehicles Symposium (IV). 76–81. DOI: .Google Scholar
Digital Library
- M. K. Ameko, M. L. Beltzer, L. Cai, M. Boukhechba, B. A. Teachman, and L. E. Barnes. September. 2020. Offline contextual multi-armed bandits for mobile health interventions: A case study on emotion regulation. Fourteenth ACM Conference on Recommender Systems. 249–258. DOI: .Google Scholar
Digital Library
- N. Anand and P. Verma. 2015. Convoluted Feelings: Convolutional and Recurrent Nets for Detecting Emotion from Audio Data. In Technical Report. Stanford University. http://vision.stanford.edu/teaching/cs231n/reports/2015/pdfs/Cs_231n_paper.pdf.Google Scholar
- J. Andreoni and B. D. Bernheim. 2009. Social image and the 50–50 norm: A theoretical and experimental analysis of audience effects. Econometrica 77, 5, 1607–1636. DOI: .Google Scholar
Cross Ref
- D. Aneja, D. McDuff, and S. Shah. 2019. A high-fidelity open embodied avatar with lip syncing and expression capabilities. In 2019 International Conference on Multimodal Interaction. 69–73. DOI: .Google Scholar
Digital Library
- R. N. R. Ariffin and R. K. Zahari. December. 2013. Perceptions of the urban walking environments. Procedia Soc. Behav. Sci. 105, 589–597. ISSN 18770428. https://linkinghub.elsevier.com/retrieve/pii/S1877042813044376. DOI: .Google Scholar
Cross Ref
- S. Arora and P. Doshi. 2018. A survey of inverse reinforcement learning: Challenges, methods and progress. arXiv preprint arXiv:1806.06877.Google Scholar
- J. Atkinson and D. Campos. 2016. Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst. Appl. 47, 35–41. DOI: .Google Scholar
Digital Library
- P. K. Atrey, M. A. Hossain, A. El Saddik, and M. S. Kankanhalli. November. 2010. Multimodal fusion for multimedia analysis: A survey. Multimed. Syst. 16, 6, 345–379. ISSN 09424962. DOI: .Google Scholar
Digital Library
- M. Augstein, E. Herder, and W. Wörndl. 2019. Personalized Human–Computer Interaction. Walter de Gruyter GmbH & Co KG.Google Scholar
- E. Awad, S. Dsouza, R. Kim, J. Schulz, J. Henrich, A. Shariff, J.-F. Bonnefon, and I. Rahwan. 2018. The moral machine experiment. Nature 563, 7729, 59–64. DOI: .Google Scholar
Cross Ref
- S. Bafna. July. 2016. Space syntax: A brief introduction to its logic and analytical techniques. Environ. Behav. DOI: .Google Scholar
Cross Ref
- S. C. Bagui. 2005. Combining pattern classifiers: Methods and algorithms. Technometrics 47, 517–518. ISSN 0040-1706. DOI: .Google Scholar
Cross Ref
- R. A. Baksh, S. Abrahams, B. Auyeung, and S. E. MacPherson. 2018. The Edinburgh Social Cognition Test (ESCoT): Examining the effects of age on a new measure of theory of mind and social norm understanding. PLoS One 13, 4, 1–16. DOI: .Google Scholar
Cross Ref
- T. Baltrušaitis, C. Ahuja, and L.-P. Morency. 2018. Multimodal machine learning: A survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2, 423–443. DOI: .Google Scholar
Digital Library
- T. Baltrušaitis, N. Banda, and P. Robinson. 2013. Dimensional affect recognition using continuous conditional random fields. In 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). IEEE, 1–8. DOI: .Google Scholar
Cross Ref
- T. Baltrušaitis, P. Robinson, and L.-P. Morency. 2016. OpenFace: An open source facial behavior analysis toolkit. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 1–10. DOI: .Google Scholar
Cross Ref
- R. Banse and K. Scherer. 1996. Acoustic profiles in vocal emotion expression. J. Pers. Soc. Psychol. 70, 3, 32–41. DOI: .Google Scholar
Cross Ref
- T. Bänziger, S. Patel, and K. R. Scherer. 2014. The role of perceived voice and speech characteristics in vocal emotion communication. J. Nonverbal Behav. 38, 1, 31–52. DOI: .Google Scholar
Cross Ref
- R. Barba, A. P. D. Madrid, and J. G. Boticario. January. 2015. Development of an inexpensive sensor network for recognition of sitting posture. Int. J. Distrib. Sens. Netw. 2015. ISSN 1550-1329. DOI: .Google Scholar
Cross Ref
- S. Baron-Cohen. 1996. Reading the mind in the face: A cross-cultural and developmental study. Vis. Cogn. 3, 1, 39–60. DOI: .Google Scholar
Cross Ref
- S. Baron-Cohen. 1997. How to build a baby that can read minds: Cognitive mechanisms in mindreading. In The Maladapted Mind: Classic Readings in Evolutionary Psychopathology. 207–239. DOI: .Google Scholar
Cross Ref
- S. Baron-Cohen and S. Wheelwright. 2004. The Empathy Quotient: An investigation of adults with Asperger Syndrome or high functioning autism, and normal sex differences. J. Autism Dev. Disord. 34, 2, 163–175. DOI: .Google Scholar
Cross Ref
- L. F. Barrett. 2009. The future of psychology: Connecting mind to brain. Perspect. Psychol. Sci. 4, 4, 326–339. DOI: .Google Scholar
Cross Ref
- L. F. Barrett. 2017. How Emotions Are Made: The Secret Life of the Brain. Houghton Mifflin Harcourt.Google Scholar
- L. F. Barrett and E. Bliss-Moreau. 2009. Affect as a psychological primitive. Adv. Exp. Soc. Psychol. 41, 167–218. DOI: .Google Scholar
Cross Ref
- L. F. Barrett, B. Mesquita, and M. Gendron. October. 2011. Context in emotion perception. Curr. Dir. Psychol. Sci. 20, 5, 286–290. ISSN 0963-7214. http://journals.sagepub.com/doi/10.1177/0963721411422522. DOI: .Google Scholar
Cross Ref
- L. F. Barrett, R. Adolphs, S. Marsella, A. M. Martinez, and S. D. Pollak. 2019. Emotional expressions reconsidered: Challenges to inferring emotion from human facial movements. Psychol. Sci. Public Interest 20, 1–68. ISSN 21600031. DOI: .Google Scholar
Cross Ref
- M. S. Bartlett, J. C. Hager, P. Ekman, and T. J. Sejnowski. 1999. Measuring facial expressions by computer image analysis. Psychophysiology 36, 2, 253–263. DOI: .Google Scholar
Cross Ref
- C. Bartneck and J. Forlizzi. 2004. A design-centred framework for social human–robot interaction. In RO-MAN 2004—13th IEEE International Workshop on Robot and Human Interactive Communication (IEEE Catalog No. 04TH8759). IEEE, 591–594. DOI: .Google Scholar
Cross Ref
- C. Bartneck and M. J. Lyons. 2009. Facial expression analysis, modeling and synthesis: Overcoming the limitations of artificial intelligence with the art of the soluble. In Handbook of Research on Synthetic Emotions and Sociable Robotics: New Applications in Affective Computing and Artificial Intelligence. IGI Global, 34–55. DOI: .Google Scholar
Cross Ref
- A. G. Barto and S. Mahadevan. January. 2003. Recent advances in hierarchical reinforcement learning. Discrete Event Dyn. Syst. 13, 1–2, 41–77. ISSN 0924-6703. DOI: .Google Scholar
Digital Library
- A. Batliner, S. Hantke, and B. W. Schuller. 2020. Ethics and good practice in computational paralinguistics. IEEE Trans. Affect. Comput. DOI: .Google Scholar
Cross Ref
- A. Batliner, S. Steidl, C. Hacker, and E. Nöth. 2008. Private emotions versus social interaction: A data-driven approach towards analysing emotion in speech. User Model. User-Adapt. Interact. 18, 1–2, 175–206. DOI: .Google Scholar
Digital Library
- C. D. Batson. 2009. These things called empathy: Eight related but distinct phenomena. In J. Decety & W. Ickes (Eds.), The Social Neuroscience of Empathy. MIT Press, 3–15. DOI: .Google Scholar
Cross Ref
- C. D. Batson. 2011. Altruism in Humans. Oxford University Press. DOI: .Google Scholar
Cross Ref
- S. D. Baum. 2017. On the promotion of safe and socially beneficial artificial intelligence. AI Soc. 32, 4, 543–551. DOI: .Google Scholar
Digital Library
- Y. Baveye, E. Dellandrea, C. Chamaret, and L. Chen. 2015. LIRIS-ACCEDE: A video database for affective content analysis. IEEE Trans. Affect. Comput. 6, 1, 43–55. DOI: .Google Scholar
Digital Library
- R. Beard, R. Das, R. W. Ng, P. K. Gopalakrishnan, L. Eerens, P. Swietojanski, and O. Miksik. 2018. Multi-modal sequence fusion via recursive attention for emotion recognition. In Proceedings of the 22nd Conference on Computational Natural Language Learning. 251–259. DOI: .Google Scholar
Cross Ref
- A. Beatty. 2010. How did it feel for you? Emotion, narrative, and the limits of ethnography. Am. Anthropol. 112, 3, 430–443. DOI: .Google Scholar
Cross Ref
- A. T. Beck, R. A. Steer, and M. G. Carbin. 1988. Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clin. Psychol. Rev. 8, 77–100. ISSN 02727358. DOI: .Google Scholar
Cross Ref
- A. Bellas, S. Perrin, B. Malone, K. Rogers, G. Lucas, E. Phillips, C. Tossell, and E. de Visser. 2020. Rapport building with social robots as a method for improving mission debriefing in human–robot teams. In 2020 Systems and Information Engineering Design Symposium (SIEDS). IEEE, 160–163. DOI: .Google Scholar
Cross Ref
- T. Belpaeme, J. Kennedy, A. Ramachandran, B. Scassellati, and F. Tanaka. 2018. Social robots for education: A review. Sci. Robot. 3, 21. DOI: .Google Scholar
Cross Ref
- A. Ben-Youssef, C. Clavel, S. Essid, M. Bilac, M. Chamoux, and A. Lim. 2017. UE-HRI: A new dataset for the study of user engagement in spontaneous human–robot interactions. In Proceedings of the 19th ACM International Conference on Multimodal Interaction. ACM, 464–472. DOI: .Google Scholar
Digital Library
- Y. Bengio, J. Louradour, R. Collobert, and J. Weston. 2009. Curriculum learning. In Proceedings of the 26th Annual International Conference on Machine Learning. 41–48. DOI: .Google Scholar
Digital Library
- Ŝ. Beňuš, M. Trnka, E. Kuric, L. Marták, A. Gravano, J. Hirschberg, and R. Levitan. 2018. Prosodic entrainment and trust in human–computer interaction. In Proceedings of the 9th International Conference on Speech Prosody. International Speech Communication Association, Baixas, France, 220–224. DOI: .Google Scholar
Cross Ref
- A. Bera, T. Randhavane, and D. Manocha. June. 2019. The emotionally intelligent robot: Improving socially-aware human prediction in crowded environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.Google Scholar
- A. Betella and P. F. M. J. Verschure. February. 2016. The affective slider: A digital self-assessment scale for the measurement of human emotions. PLoS One 11, 2, e0148037. ISSN 1932-6203. DOI: .Google Scholar
Cross Ref
- N. Bianchi-Berthouze and A. Kleinsmith. 2003. A categorical approach to affective gesture recognition. Conn. Sci. 15, 259–269. ISSN 09540091. DOI: .Google Scholar
Cross Ref
- E. A. Björling and E. Rose. 2019. Participatory research principles in human-centered design: Engaging teens in the co-design of a social robot. Multimodal Technol. Interact 3, 1, 8. DOI: .Google Scholar
Cross Ref
- M. M. Blattner and E. P. Glinert. 1996. Multimodal integration. IEEE Multimed. 3, 14–24. ISSN 1070986X. DOI: .Google Scholar
Digital Library
- P. Bloom. 2017. Empathy and its discontents. Trends Cogn. Sci. 21, 1, 24–31. DOI: .Google Scholar
Cross Ref
- A. Bogomolov, B. Lepri, M. Ferron, F. Pianesi, and A. Pentland. 2014. Daily stress recognition from mobile phone data, weather conditions and individual traits. In MM 2014—Proceedings of the 2014 ACM Conference on Multimedia. 477–486. ISBN 9781450330633. DOI: .Google Scholar
Digital Library
- R. M. Bond, C. J. Fariss, J. J. Jones, A. D. Kramer, C. Marlow, J. E. Settle, and J. H. Fowler. 2012. A 61-million-person experiment in social influence and political mobilization. Nature 489, 7415, 295–298. DOI: .Google Scholar
Cross Ref
- S. Bostok, A. D. Crosswell, A. A. Prather, and A. Steptoe. 2019. Mindfulness on-the-go: Effects of a mindfulness meditation app on work stress and well-being. J. Occup. Health Psychol. 24, 127–138. DOI: .Google Scholar
Cross Ref
- H. B. Bosworth and K. W. Schaie. 1997. The relationship of social environment, social networks, and health outcomes in the Seattle Longitudinal Study: Two analytical approaches. J. Gerontol. B Psychol. Sci. Soc. Sci. 52, 5, P197–P205. DOI: .Google Scholar
Cross Ref
- W. Boucsein. 2012. Electrodermal Activity (2nd. ed.). ISBN 9781461411260. DOI: .Google Scholar
Cross Ref
- S. Bozinovski. 1982. A self-learning system using secondary reinforcement. In R. Trappl (Ed.), Cybernetics and Systems. Elsevier Science Publishers, North Holland, 397–402.Google Scholar
- S. Bozinovski. 2003. Anticipation Driven Artificial Personality: Building on Lewin and Loehlin. Springer, Berlin, 133–150. ISBN 978-3-540-45002-3. DOI: .Google Scholar
Cross Ref
- S. Bozinovski. 2014. Modeling mechanisms of cognition–emotion interaction in artificial neural networks, since 1981. Procedia Comput. Sci. 41, 255–263. ISSN 1877-0509. 5th Annual International Conference on Biologically Inspired Cognitive Architectures, 2014 BICA. DOI: .Google Scholar
Cross Ref
- M. M. Bradley and P. J. Lang. 1994. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59. ISSN 00057916. DOI: .Google Scholar
Cross Ref
- C. Bradley and R. Wingfield. 2020. National Artificial Intelligence Strategies and Human Rights: A Review. Retrieved March 11, 2021, from https://fsi-live.s3.us-west-1.amazonaws.com/s3fs-public/national_artifical_intelligence_strategies_and_human_rights-a_review1.pdf.Google Scholar
- M. M. Bradley, B. N. Cuthbert, and P. J. Lang. April. 2010. Affect and the startle reflex. In Startle Modification. Cambridge University Press, 157–184. DOI: .Google Scholar
Cross Ref
- G. N. Bratman, C. B. Anderson, M. G. Berman, B. Cochran, S. D. Vries, J. Flanders, C. Folke, H. Frumkin, J. J. Gross, T. Hartig, P. H. Kahn, M. Kuo, J. J. Lawler, P. S. Levin, T. Lindahl, A. Meyer-Lindenberg, R. Mitchell, Z. Ouyang, J. Roe, L. Scarlett, J. R. Smith, M. v. d. Bosch, B. W. Wheeler, M. P. White, H. Zheng, and G. C. Daily. July. 2019. Nature and mental health: An ecosystem service perspective. Sci. Adv. 5, 7, eaax0903. ISSN 2375-2548. https://advances.sciencemag.org/content/5/7/eaax0903. DOI: .Google Scholar
Cross Ref
- C. Breazeal. 2002a. Regulation and entrainment in human–robot interaction. Int. J. Rob. Res. 21, 10–11, 883–902. DOI: .Google Scholar
Digital Library
- C. L. Breazeal. 2002b. Designing Sociable Robots. MIT Press. Google Scholar
Digital Library
- C. Breazeal. July. 2003. Emotion and sociable humanoid robots. Int. J. Hum. Comput. Stud. 59, 1–2, 119–155. ISSN 1071-5819. DOI: .Google Scholar
Digital Library
- C. Breazeal, K. Dautenhahn, and T. Kanda. 2016. Social robotics. In Springer Handbook of Robotics. 1935–1972. DOI: .Google Scholar
Cross Ref
- M. Breidt, C. Wallraven, D. W. Cunningham, and H. Bulthoff. 2003. Facial animation based on 3D scans and motion capture. In SIGGRAPH, Vol. 3. http://hdl.handle.net/11858/00-001M-0000-0013-DC35-C.Google Scholar
- M. Bretan, G. Hoffman, and G. Weinberg. 2015. Emotionally expressive dynamic physical behaviors in robots. Int. J. Hum. Comput. Stud. 78, 1–16. DOI: .Google Scholar
Digital Library
- J. Broekens, W. A. Kosters, and F. J. Verbeek. 2007. Affect, anticipation, and adaptation: Affect-controlled selection of anticipatory simulation in artificial adaptive agents. Adapt. Behav. 15, 4, 397–422. DOI: .Google Scholar
Digital Library
- S. Bubeck and N. Cesa-Bianchi. 2012. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Found. Trends Mach. Learn. 5, 1–122. DOI: .Google Scholar
Cross Ref
- J. Buolamwini and T. Gebru. 2018. Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on Fairness, Accountability and Transparency. PMLR, 77–91.Google Scholar
- Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. 2019. Large-scale study of curiosity-driven learning. In 7th International Conference on Learning Representations (ICLR 2019). 1–17.Google Scholar
- J. K. Burgoon, N. Magnenat-Thalmann, M. Pantic, and A. Vinciarelli. 2017. Social Signal Processing. Cambridge University Press. DOI: .Google Scholar
Digital Library
- B. L. Burke, C. W. Dunn, D. C. Atkins, and J. S. Phelps. 2004. The emerging evidence base for motivational interviewing: A meta-analytic and qualitative inquiry. J. Cogn. Psychother. 18, 4, 309–322. DOI: .Google Scholar
Cross Ref
- C. Busso, Z. Deng, S. Yildirim, M. Bulut, C. M. Lee, A. Kazemzadeh, S. Lee, U. Neumann, and S. Narayanan. 2004. Analysis of emotion recognition using facial expressions, speech and multimodal information. In Proceedings of the 6th International Conference on Multimodal. https://dl.acm.org/citation.cfm?id=1027968.Google Scholar
- C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N. Chang, S. Lee, and S. S. Narayanan. 2008. IEMOCAP: Interactive emotional dyadic motion capture database. Lang. Resour. Eval. 42, 4, 335–359. DOI: .Google Scholar
Cross Ref
- J. T. Cacioppo and L. G. Tassinary. 1989. Inferring psychological significance from physiological signals. Am. Psychol. 45, 1, 16–28. DOI: .Google Scholar
Cross Ref
- R. A. Calvo and S. D’Mello. 2010. Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 1, 1, 18–37. DOI: .Google Scholar
Digital Library
- M. G. Calvo and P. J. Lang. September. 2004. Gaze patterns when looking at emotional pictures: motivationally biased attention. Motiv. Emot. 28, 3, 221–243. ISSN 01467239. DOI: .Google Scholar
Cross Ref
- R. A. Calvo and D. Peters. 2014. Positive Computing: Technology for Wellbeing and Human Potential. MIT Press. Google Scholar
Digital Library
- R. Calvo, S. D’Mello, J. Gratch, A. Kappas, N. Bianchi-Berthouze, and A. Kleinsmith. 2014a. Automatic recognition of affective body expressions. In The Oxford Handbook of Affective Computing. DOI: .Google Scholar
Cross Ref
- R. Calvo, S. D’Mello, J. Gratch, A. Kappas, C.-C. Lee, J. Kim, A. Metallinou, C. Busso, S. Lee, and S. S. Narayanan. 2014b. Speech in affective computing. In The Oxford Handbook of Affective Computing. DOI: .Google Scholar
Cross Ref
- R. A. Calvo, S. D’Mello, J. M. Gratch, and A. Kappas. 2015. The Oxford Handbook of Affective Computing. Oxford University Press. DOI: .Google Scholar
Cross Ref
- E. Cambria, D. Das, S. Bandyopadhyay, and A. Feraco (Eds.). 2017. A Practical Guide to Sentiment Analysis, Vol. 5 of Socio-Affective Computing. Springer International Publishing, Cham. ISBN 978-3-319-55392-4. http://link.springer.com/10.1007/978-3-319-55394-8. DOI: .Google Scholar
Cross Ref
- D. T. Campbell. 1957. Factors relevant to the validity of experiments in social settings. Psychol. Bull. 54, 4, 297–312. DOI: .Google Scholar
Cross Ref
- A. Camurri, I. Lagerlöf, and G. Volpe. 2003. Recognizing emotion from dance movement: Comparison of spectator recognition and automated techniques. Int. J. Hum. Comput. Stud. 59, 213–225. ISSN 10715819. DOI: .Google Scholar
Digital Library
- W. B. Cannon. 1927. The James–Lange theory of emotions: A critical examination and an alternative theory. Am. J. Psychol. 39, 1/4, 106–124. DOI: .Google Scholar
Cross Ref
- L. Canzian and M. Musolesi. 2015. Trajectories of depression. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing—UbiComp’15. ACM Press, New York, NY, 1293–1304. ISBN 9781450335744. http://dl.acm.org/citation.cfm?doid=2750858.2805845. DOI: .Google Scholar
Digital Library
- H. Cao, D. G. Cooper, M. K. Keutmann, R. C. Gur, A. Nenkova, and R. Verma. 2014. CREMA-D: Crowd-sourced emotional multimodal actors dataset. IEEE Trans. Affect. Comput. 5 4, 377–390. DOI: .Google Scholar
Cross Ref
- G. Caridakis, L. Malatesta, L. Kessous, N. Amir, A. Raouzaiou, and K. Karpouzis. 2006. Modeling naturalistic affective states via facial and vocal expressions recognition. In Proceedings of the 8th International Conference on Multimodal Interfaces. ACM, 146–154. DOI: .Google Scholar
Digital Library
- G. Caridakis, G. Castellano, L. Kessous, A. Raouzaiou, L. Malatesta, S. Asteriadis, and K. Karpouzis. 2007. Multimodal emotion recognition from expressive faces, body gestures and speech. In IFIP International Conference on Artificial Intelligence Applications and Innovations, Springer, 375–388. DOI: .Google Scholar
Cross Ref
- P. Carreno-Medrano, L. Tian, A. Allen, S. Sumartojo, M. Mintrom, E. Coronado, G. Venture, E. Croft, and D. Kulic. 2021. Aligning robot’s behaviours and users’ perceptions through participatory prototyping. arXiv preprint arXiv:2101.03660.Google Scholar
- J. M. Carroll. 2000. Making Use: Scenario-Based Design of Human–Computer Interactions. MIT Press. Google Scholar
Digital Library
- D. V. Carvalho, E. M. Pereira, and J. S. Cardoso. 2019. Machine learning interpretability: A survey on methods and metrics. Electronics 8, 8, 832. DOI: .Google Scholar
Cross Ref
- S. Carvalho, J. Leite, S. Galdo-Álvarez, and O. F. Gonçalves. 2012. The emotional movie database (EMDB): A self-report and psychophysiological study. Appl. Psychophysiol. Biofeedback 37, 4, 279–294. DOI: .Google Scholar
Cross Ref
- C. Castelfranchi. 2000. Affective appraisal versus cognitive evaluation in social emotions and interactions. In A. Paiva (Ed.), Affective Interactions: Towards a New Generation of Computer Interfaces. Springer, Berlin, 76–106. DOI: .Google Scholar
Cross Ref
- J. Ceha, N. Chhibber, J. Goh, C. McDonald, P.-Y. Oudeyer, D. Kulić, and E. Law. 2019. Expression of curiosity in social robots: Design, perception, and effects on behaviour. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 1–12. DOI: .Google Scholar
Digital Library
- A. Celeghin, M. Diano, A. Bagnis, M. Viola, and M. Tamietto. 2017. Basic emotions in human neuroscience: Neuroimaging and beyond. Front. Psychol. 8, 1432. DOI: .Google Scholar
Cross Ref
- C. Chalmers, P. Fergus, C. A. Curbelo Montanez, S. Sikdar, F. Ball, and B. Kendall. 2020. Detecting activities of daily living and routine behaviours in dementia patients living alone using smart meter load disaggregation. IEEE Trans. Emerg. Topics Comput. 1. DOI: .Google Scholar
Cross Ref
- S. Chancellor and M. D. Choudhury. 2020. Methods in predictive techniques for mental health status on social media: A critical review. NPJ Digit. Med. 3, 43. DOI: .Google Scholar
Cross Ref
- G. Chanel, J. J. Kierkels, M. Soleymani, and T. Pun. 2009. Short-term emotion assessment in a recall paradigm. Int. J. Hum. Comput. Stud. 67, 607–627. ISSN 10715819. DOI: .Google Scholar
Digital Library
- D. Chatzakou, A. Vakali, and K. Kafetsios. 2017. Detecting variation of emotions in online activities. Expert Syst. Appl. 89, 318–332. DOI: .Google Scholar
Digital Library
- S. Chen and Q. Jin. 2016. Multi-modal conditional attention fusion for dimensional emotion prediction. In MM 2016—Proceedings of the 2016 ACM Multimedia Conference. ISBN 9781450336031. DOI: .Google Scholar
Digital Library
- J. Chen, Z. Chen, Z. Chi, and H. Fu. 2014. Emotion recognition in the wild with feature fusion and multiple kernel learning. In ICMI 2014—Proceedings of the 2014 International Conference on Multimodal Interaction. 508–513. ISBN 9781450328852. DOI: .Google Scholar
Digital Library
- D. Chetverikov and R. Péteri. 2005. A brief survey of dynamic texture description and recognition. In Computer Recognition Systems. Springer, 17–26. DOI: .Google Scholar
Cross Ref
- H.-C. Chou and C.-C. Lee. 2019. Every rating matters: Joint learning of subjective labels and individual annotators for speech emotion classification. In ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 5886–5890. DOI: .Google Scholar
Cross Ref
- T. Choudhury and A. Pentland. 2002. The sociometer: A wearable device for understanding human networks. In Proceedings of CSCW-02 Workshop: Ad Hoc Communications and Collaboration in Ubiquitous Computing Environment. Kauai, HI.Google Scholar
- N. Churamani, P. Anton, M. Brügger, E. Fließwasser, T. Hummel, J. Mayer, W. Mustafa, H. G. Ng, T. L. C. Nguyen, Q. Nguyen, M. Soll, S. Springenberg, S. Griffiths, S. Heinrich, N. Navarro-Guerrero, E. Strahl, J. Twiefel, C. Weber, and S. Wermter. 2017. The impact of personalisation on human–robot interaction in learning scenarios. In Proceedings of the 5th International Conference on Human Agent Interaction. ACM, 171–180. .Google Scholar
Digital Library
- N. Churamani, S. Kalkan, and H. Gunes. 2020. Continual learning for affective robotics: Why, what and how? In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). 425–431. IEEE. DOI: .Google Scholar
Cross Ref
- E. A. Clark, J. Kessinger, S. E. Duncan, M. A. Bell, J. Lahne, D. L. Gallagher, and S. F. O’Keefe. 2020. The facial action coding system for characterization of human affective response to consumer product-based stimuli: A systematic review. Front. Psychol. 11, 920. DOI: .Google Scholar
Cross Ref
- L. Clark, N. Pantidi, O. Cooney, P. Doyle, D. Garaialde, J. Edwards, B. Spillane, E. Gilmartin, C. Murad, C. Munteanu, V. Wade, and Benjamin R. Cowan. 2019. What makes a good conversation? Challenges in designing truly conversational agents. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 1–12. DOI: .Google Scholar
Digital Library
- S. Cohen. 2004. Social relationships and health. Am. Psychol. 59, 8, 676–684. DOI: .Google Scholar
Cross Ref
- P. R. Cohen. 2018. Back to the future for dialogue research: A position paper. arXiv preprint arXiv:1812.01144.Google Scholar
- S. Cohen, T. Kamarck, and R. Mermelstein. 1983. A global measure of perceived stress. J. Health Soc. Behav. 24, 385–396. ISSN 00221465. DOI: .Google Scholar
Cross Ref
- I. Cohen, N. Sebe, A. Garg, L. S. Chen, and T. S. Huang. 2003. Facial expression recognition from video sequences: Temporal and static modeling. Comput. Vis. Image Underst. 91, 160–187. ISSN 10773142. DOI: .Google Scholar
Digital Library
- R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. August. 2011. Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537. Google Scholar
Digital Library
- K. Conger, R. Fausset, and S. F. Kovaleski. 2019. San Francisco bans facial recognition technology. The New York Times 14.Google Scholar
- M. G. Constantin, L. D. Stefan, B. Ionescu, C.-H. Demarty, M. Sjoberg, M. Schedl, and G. Gravier. 2020. Affect in multimedia: Benchmarking violent scenes detection. IEEE Trans. Affect. Comput. DOI: .Google Scholar
Cross Ref
- R. Cook, G. Bird, C. Catmur, C. Press, and C. Heyes. 2014. Mirror neurons: From origin to function. Behav. Brain Sci. 37, 2, 177–192. DOI: .Google Scholar
Cross Ref
- T. F. Cootes, G. J. Edwards, and C. J. Taylor. 1998. Active appearance models. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). ISBN 3540646132. DOI: .Google Scholar
Cross Ref
- T. F. Cootes, G. J. Edwards, and C. J. Taylor. 2001. Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23, 6, 681–685. DOI: .Google Scholar
Digital Library
- D. T. Cordaro, R. Sun, D. Keltner, S. Kamble, N. Huddar, and G. McNeil. 2018. Universals and cultural variations in 22 emotional expressions across five cultures. Emotion 18, 1, 75–93. DOI: .Google Scholar
Cross Ref
- M. O. Cordel, S. Fan, Z. Shen, and M. S. Kankanhalli. 2019. Emotion-aware human attention prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4026–4035.Google Scholar
- C. Corneanu, F. Noroozi, D. Kaminska, T. Sapinski, S. Escalera, and G. Anbarjafari. 2018. Survey on emotional body gesture recognition. IEEE Trans. Affect. Comput. 12, 505–523. ISSN 19493045. DOI: .Google Scholar
Digital Library
- E. Coronado, D. Deuff, P. Carreno-Medrano, L. Tian, D. Kulić, S. Sumartojo, F. Mastrogio-Vanni, and G. Venture. 2021. Towards a modular and distributed end-user development framework for human–robot interaction. IEEE Access 9, 12675–12692. DOI: .Google Scholar
Cross Ref
- I. Cos, L. Cañamero, G. M. Hayes, and A. Gillies. December. 2013. Hedonic value: Enhancing adaptation for motivated agents. Adapt. Behav. 21, 6, 465–483. ISSN 1059-7123. DOI: .Google Scholar
Digital Library
- S. Cosentino, E. I. Randria, J.-Y. Lin, T. Pellegrini, S. Sessa, and A. Takanishi. 2018. Group emotion recognition strategies for entertainment robots. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 813–818. DOI: .Google Scholar
Digital Library
- J. Costa, A. T. Adams, M. F. Jung, F. Guimbretière, and T. Choudhury. 2016. EmotionCheck: Leveraging bodily signals and false feedback to regulate our emotions. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 758–769. ACM. DOI: .Google Scholar
Digital Library
- A. S. Cowen and D. Keltner. 2017. Self-report captures 27 distinct categories of emotion bridged by continuous gradients. Proc. Natl. Acad. Sci. 114, 38, E7900–E7909. DOI: .Google Scholar
Cross Ref
- R. Cowie. 2015. Ethical issues in affective computing. In The Oxford Handbook of Affective Computing. Oxford University Press, 334–348. DOI: .Google Scholar
Cross Ref
- R. Cowie and E. Douglas-Cowie. 1996. Automatic statistical analysis of the signal and prosodic signs of emotion in speech. In International Conference on Spoken Language Processing, ICSLP, Proceedings. DOI: .Google Scholar
Cross Ref
- R. Cowie, E. Douglas-Cowie, S. Savvidou, E. McMahon, M. Sawey, and M. Schröder. 2000. FEELTRACE: An instrument for recording perceived emotion in real time. ISCA Workshop on Speech Emotion. DOI: .Google Scholar
Cross Ref
- CSS Electronics. 2018. OBD2 data logger—Easily record your car data. Retrieved September 18, 2020, from https://www.csselectronics.com/screen/page/obd2-data-logger-sd-memory-convert/.Google Scholar
- B. M. Cuff, S. J. Brown, L. Taylor, and D. J. Howat. 2016. Empathy: A review of the concept. Emot. Rev. 8, 2, 144–153. DOI: .Google Scholar
Cross Ref
- M. L. Cummings. 2006. Automation and accountability in decision support system interface design. J. Technol. Stud. 32, 23–31. DOI: .Google Scholar
Cross Ref
- N. Dalal and B. Triggs. 2005. Histograms of oriented gradients for human detection. In Proceedings—2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005. 886–893. ISBN 0769523722. DOI: .Google Scholar
Digital Library
- A. R. Damasio. 1994. Descartes’ Error. Emotion, Reason and the Human Brain. Avon Books, New York.Google Scholar
- E. S. Dan-Glauser and K. R. Scherer. June. 2011. The Geneva Affective PicturE Database (GAPED): A new 730-picture database focusing on valence and normative significance. Behav. Res. Methods 43, 2, 468–477. ISSN 1554-3528. http://link.springer.com/10.3758/s13428-011-0064-1. DOI: .Google Scholar
Cross Ref
- C. Darwin. 1873. The Expression of the Emotions in Man and Animals. D. Appleton. https://books.google.com/books?id=4jp9AAAAMAAJ.Google Scholar
- K. Dautenhahn. 2007. Methodology & themes of human–robot interaction: A growing research field. Int. J. Adv. Robot. Syst. 4, 1, 15. DOI: .Google Scholar
Cross Ref
- K. Dautenhahn, I. Werry, J. Rae, P. Dickerson, P. Stribling, and B. Ogden. 2002. Robotic playmates. In L. Cañamero, B. Edmonds, K. Dautenhahn, and A. Bond (Eds.), Socially Intelligent Agents. Springer, Boston, MA, 117–124. DOI: .Google Scholar
Cross Ref
- S. K. Davis, M. Morningstar, M. A. Dirks, and P. Qualter. 2020. Ability emotional intelligence: What about recognition of emotion in voices? Pers. Individ. Dif. 160, 10993, 1–5. DOI: .Google Scholar
Cross Ref
- M. De Graaf, S. Ben Allouch, and J. Van Dijk. 2017. Why do they refuse to use my robot? Reasons for non-use derived from a long-term home study. In Proceedings of the 2017 ACM/IEEE International Conference on Human–Robot Interaction. ACM, 224–233. DOI: .Google Scholar
Digital Library
- C. J. De Luca. 1997. The use of surface electromyography in biomechanics. J. Appl. Biomech. 13, 2, 135–163. DOI: .Google Scholar
Cross Ref
- M. De Meijer. 1989. The contribution of general features of body movement to the attribution of emotions. J. Nonverbal Behav. 13, 4, 247–268. DOI: .Google Scholar
Cross Ref
- T. H. M. de Oliveira and M. Painho. June. 2015. Emotion & stress mapping: Assembling an ambient geographic information-based methodology in order to understand smart cities. In 2015 10th Iberian Conference on Information Systems and Technologies (CISTI), Aveiro, Portugal. IEEE, 1–4. ISBN 978-989-98434-5-5. http://ieeexplore.ieee.org/document/7170469/. DOI: .Google Scholar
Cross Ref
- L. C. De Silva, T. Miyasato, and R. Nakatsu. 1997. Facial emotion recognition using multimodal information. In Proceedings of the International Conference on Information, Communications and Signal Processing. ICICS 1, 397–401. DOI: .Google Scholar
Cross Ref
- F. B. de Waal and S. D. Preston. 2017. Mammalian empathy: Behavioural manifestations and neural basis. Nat. Rev. Neurosci. 18, 8, 498–509. DOI: .Google Scholar
Cross Ref
- C. Debes, A. Merentitis, S. Sukhanov, M. Niessen, N. Frangiadakis, and A. Bauer. 2016. Monitoring activities of daily living in smart homes: Understanding human behavior. IEEE Signal Process. Mag. 33, 2, 81–94. DOI: .Google Scholar
Cross Ref
- J. Decety and P. L. Jackson. 2004. The functional architecture of human empathy. Behav. Cogn. Neurosci. Rev. 3, 2, 71–100. DOI: .Google Scholar
Cross Ref
- J. Decety and M. Meyer. 2008. From emotion resonance to empathic understanding: A social developmental neuroscience account. Dev. Psychopathol. 20, 4, 1053–1080. DOI: .Google Scholar
Cross Ref
- E. Delaherche, M. Chetouani, A. Mahdhaoui, C. Saint-Georges, S. Viaux, and D. Cohen. 2012. Interpersonal synchrony: A survey of evaluation methods across disciplines. IEEE Trans. Affect. Comput. 3, 3, 349–365. DOI: .Google Scholar
Digital Library
- A. Delfanti and B. Frey. 2020. Humanly extended automation or the future of work seen through amazon patents. Sci. Technol. Human Values 46. DOI: .Google Scholar
Cross Ref
- P. Denman, E. Lewis, S. Prasad, J. Healey, H. Syed, and L. Nachman. 2018. Affsens: A mobile platform for capturing affect in context. In Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. Association for Computing Machinery, New York, NY, USA, 321–326, 6. ISBN: 9781450359412. DOI: . Barcelona, Spain, MobileHCI ’18.Google Scholar
Digital Library
- I. Deutsch, H. Erel, M. Paz, G. Hoffman, and O. Zuckerman. 2019. Home robotic devices for older adults: Opportunities and concerns. Comput. Human Behav. 98, 122–133. DOI: .Google Scholar
Digital Library
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. 2018. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.Google Scholar
- A. Dhall, R. Goecke, J. Joshi, M. Wagner, and T. Gedeon. 2013. Emotion recognition in the wild challenge 2013. In Proceedings of the 15th ACM on International Conference on Multimodal Interaction. 509–516. DOI: .Google Scholar
Digital Library
- A. Dhall, G. Sharma, R. Goecke, and T. Gedeon. 2020. EmotiW 2020: Driver gaze, group emotion, student engagement and physiological signal based challenges. In Proceedings of the 2020 International Conference on Multimodal Interaction. 784–789. DOI: .Google Scholar
Digital Library
- J. Diemer, G. W. Alpers, H. M. Peperkorn, Y. Shiban, and A. Mühlberger. January. 2015. The impact of perception and presence on emotional reactions: A review of research in virtual reality. Front. Psychol. 6. ISSN 1664-1078. http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00026/abstract. DOI: .Google Scholar
Cross Ref
- S. D’Mello and R. A. Calvo. 2013. Beyond the basic emotions: What should affective computing compute? CHI’13 Extended Abstracts on Human Factors in Computing Systems, 2287–2294. DOI: .Google Scholar
Digital Library
- S. K. D’Mello and J. Kory. 2015. A review and meta-analysis of multimodal affect detection systems. ACM Comput. Surv. 47, 1–36. DOI: . ISSN 15577341.Google Scholar
Digital Library
- A. Dobrosovestnova and G. Hannibal. 2020. Teachers’ disappointment: Theoretical perspective on the inclusion of ambivalent emotions in human–robot interactions in education. In Proceedings of the 2020 ACM/IEEE International Conference on Human–Robot Interaction. 471–480. DOI: .Google Scholar
Digital Library
- F. Doshi-Velez and B. Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608.Google Scholar
- E. Douglas-Cowie, N. Campbell, R. Cowie, and P. Roach. 2003. Emotional speech: Towards a new generation of databases. Speech Commun. 40, 1, 33–60. DOI: .Google Scholar
Digital Library
- E. Douglas-Cowie, R. Cowie, I. Sneddon, C. Cox, O. Lowry, M. McRorie, J. Martin, L. Devillers, S. Abrilian, A. Batliner, N. Amir, and K. Karpouzis. 2007. The HUMAINE database: Addressing the collection and annotation of naturalistic and induced emotional data. In Affective Computing and Intelligent Interaction. DOI: .Google Scholar
Digital Library
- D. Dua and C. Graff. 2017. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.Google Scholar
- B. Dudzik, H. Hung, M. Neerincx, and J. Broekens. 2020. Investigating the influence of personal memories on video-induced emotions. In Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization. 53–61. DOI: .Google Scholar
Digital Library
- B. R. Duffy. 2003. Anthropomorphism and the social robot. Rob. Auton. Syst. 42, 3–4, 177–190. DOI: .Google Scholar
Cross Ref
- D. Dupré, E. G. Krumhuber, D. Küster, and G. J. McKeown. April. 2020. A performance comparison of eight commercially available automatic classifiers for facial affect recognition. PLoS One 15, 4, 1–17. . DOI: .Google Scholar
Cross Ref
- C. Dwork. 2008. Differential privacy: A survey of results. In International Conference on Theory and Applications of Models of Computation. Springer, 1–19. DOI: .Google Scholar
Cross Ref
- I. Dziobek, S. Fleck, E. Kalbe, K. Rogers, J. Hassenstab, M. Brand, J. Kessler, J. K. Woike, O. T. Wolf, and A. Convit. 2006. Introducing MASC: A movie for the assessment of social cognition. J. Autism Dev. Disord. 36, 5, 623–636. DOI: .Google Scholar
Cross Ref
- N. Eagle and A. Pentland. 2006. Reality mining: Sensing complex social systems. Pers. Ubiquitous Comput. 10, 4, 255–268. ISSN 1617-4909. DOI: .Google Scholar
Digital Library
- J. D. Eastwood, D. Smilek, and P. M. Merikle. 2001. Differential attentional guidance by unattended faces expressing positive and negative emotion. Percept. Psychophys. 63, 6, 1004–1013. DOI: .Google Scholar
Cross Ref
- T. Eerola and J. K. Vuoskoski. January. 2011. A comparison of the discrete and dimensional models of emotion in music. Psychol. Music 39, 1, 18–49. ISSN 0305-7356. http://journals.sagepub.com/doi/10.1177/0305735610362821. DOI: .Google Scholar
Cross Ref
- N. Eisenberg. 2001. The core and correlates of affective social competence. Soc. Dev. 10, 1, 120–124. DOI: .Google Scholar
Cross Ref
- P. Ekkekakis and J. A. Russell. 2013. The Measurement of Affect, Mood, and Emotion. DOI: .Google Scholar
Cross Ref
- P. Ekman. 1992. An argument for basic emotions. Cogn. Emot. 6 (3–4), 169–200. DOI: .Google Scholar
Cross Ref
- P. Ekman. 2005. Basic emotions. In Handbook of Cognition and Emotion. DOI: .Google Scholar
Cross Ref
- P. Ekman and W. V. Friesen. 1971. Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 17 (2), 124–129.Google Scholar
Cross Ref
- P. Ekman and W. V. Friesen. 1977. Manual for the facial action coding system. Consult. Psychol. ISSN: 0148-0227.Google Scholar
- P. Ekman and W. V. Friesen. 1978. Facial Action Coding System: Investigator’s Guide. Consulting Psychologists Press.Google Scholar
- P. Ekman and W. V. Friesen. 2003. Unmasking the Face: A Guide to Recognizing Emotions from Facial Clues. ISHK.Google Scholar
- P. Ekman, W. V. Friesen, and P. Ellsworth. 1972. Emotion in the Human Face: Guidelines for Research and an Integration of Findings. Pergamon Press, Elmsford, NY.Google Scholar
- P. Ekman, W. V. Friesen, and J. C. Hager. 2002. Facial Action Coding System: The Manual on CD ROM. Salt Lake City, A Human Face.Google Scholar
- N. El Haouij, J.-M. Poggi, S. Sevestre-Ghalila, R. Ghozi, and M. Jaïdane. 2018. AffectiveROAD system and database to assess driver’s attention. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC’18). New York, NY, 800–803. DOI: .Google Scholar
Digital Library
- J. Elster. 1989. Social norms and economic theory. J. Econ. Perspect. 3 (4), 99–117. DOI: .Google Scholar
Cross Ref
- C. Epp, M. Lippold, and R. L. Mandryk. 2011. Identifying emotional states using keystroke dynamics. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’11. Association for Computing Machinery, New York, NY, 715–724. ISBN: 9781450302289. DOI: .Google Scholar
Digital Library
- S. Eriksén. 2002. Designing for accountability. In Proceedings of the Second Nordic Conference on Human–Computer Interaction. 177–186. Google Scholar
Digital Library
- G. W. Evans, C. Smith, and K. Pezdek. June. 1982. Cognitive maps and urban form. J. Am. Plann. Assoc. 48, 2, 232–244. ISSN: 0194-4363. DOI: .Google Scholar
Cross Ref
- F. Eyben, M. Wöllmer, A. Graves, B. Schuller, E. Douglas-Cowie, and R. Cowie. 2010a. On-line emotion recognition in a 3-D activation–valence–time continuum using acoustic and linguistic cues. J. Multimodal User Interfaces 3, 1–2, 7–19.Google Scholar
Cross Ref
- F. Eyben, M. Wöllmer, and B. Schuller. 2010b. OpenSmile: The Munich versatile and fast open-source audio feature extractor. In Proceedings of the 18th ACM International Conference on Multimedia, MM’10. Association for Computing Machinery, New York, NY, 1459–1462. ISBN: 9781605589336. DOI: .Google Scholar
Digital Library
- F. Eyben, F. Weninger, and B. Schuller. 2013. Affect recognition in real-life acoustic conditions—A new perspective on feature selection. In Proceedings INTERSPEECH 2013, 14th Annual Conference of the International Speech Communication Association, Lyon, France.Google Scholar
- F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. André, C. Busso, L. Y. Devillers, J. Epps, P. Laukka, S. S. Narayanan, and K. P. Truong. 2015. The Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing. IEEE Trans. Affect. Comput. 7, 2, 190–202. DOI: .Google Scholar
Digital Library
- B. Farahi. 2018. Heart of the matter: Affective computing in fashion and architecture. Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA). 206–215. http://www.behnazfarahi.com/assets/img/Affective%20Computing%20in%20Fashion%20and%20Architecture.pdf.Google Scholar
- O. Faust, Y. Hagiwara, T. J. Hong, O. S. Lih, and U. R. Acharya. 2018. Deep learning for healthcare applications based on physiological signals: A review. Comput. Methods Programs Biomed. 161, 1–13. DOI: .Google Scholar
Cross Ref
- Federal Energy Regulatory Commission. 2019 Assessment of Demand Response and Advanced Metering. Staff report, United States Department of Energy.Google Scholar
- O. FeldmanHall and L. J. Chang. 2018. Social learning: Emotions aid in optimizing goal-directed social behavior. In Goal-Directed Decision Making. Elsevier, 309–330.Google Scholar
- A. Felnhofer, O. D. Kothgassner, M. Schmidt, A.-K. Heinzle, L. Beutl, H. Hlavacs, and I. Kryspin-Exner. October 2015. Is virtual reality emotionally arousing? Investigating five emotion inducing virtual park scenarios. Int. J. Hum.-Comput. Stud. 82, 48–56. DOI: . ISSN: 10715819, https://linkinghub.elsevier.com/retrieve/pii/S1071581915000981.Google Scholar
Digital Library
- C. B. Ferster and B. F. Skinner. 1957. Schedules of Reinforcement. Prentice-Hall.Google Scholar
- C. Filippini, D. Perpetuini, D. Cardone, A. M. Chiarelli, and A. Merla. 2020. Thermal infrared imaging-based affective computing and its application to facilitate human robot interaction: A review. Appl. Sci. 10 (8), 2–23. DOI: .Google Scholar
Cross Ref
- J. Finocchiaro, R. Maio, F. Monachou, G. K. Patro, M. Raghavan, A.-A. Stoica, and S. Tsirtsis. 2020. Bridging machine learning and mechanism design towards algorithmic fairness. arXiv preprint arXiv:2010.05434. Google Scholar
Digital Library
- D. Fischer, A. W. McHill, A. Sano, R. W. Picard, L. K. Barger, C. A. Czeisler, E. B. Klerman, and A. J. Phillips. 2020. Irregular sleep and event schedules are associated with poorer self-reported well-being in US college students. Sleep. ISSN: 15509109. DOI: .Google Scholar
Cross Ref
- S. T. Fiske, A. J. Cuddy, and P. Glick. 2007. Universal dimensions of social cognition: Warmth and competence. Trends Cogn. Sci. 11, 2, 77–83. DOI: .Google Scholar
Cross Ref
- M. Fitzgerald and T. McClelland. 2017. What makes a mobile app successful in supporting health behaviour change? Health Educ. J. 76, 3, 373–381. DOI: .Google Scholar
Cross Ref
- K. K. Fitzpatrick, A. Darcy, and M. Vierhile. June. 2017. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot ): A randomized controlled trial. JMIR Ment. Health 4, 2, e19. ISSN: 2368-7959. http://mental.jmir.org/2017/2/e19/. DOI: .Google Scholar
Cross Ref
- A. W. Flores, K. Bechtel, and C. T. Lowenkamp. 2016. False positives, false negatives, and false analyses: A rejoinder to “Machine bias: There’s software used across the country to predict future criminals. And it’s biased against blacks.” Fed. Probat. 80, 38.Google Scholar
- K. Florio, V. Basile, M. Lai, and V. Patti. 2019. Leveraging hate speech detection to investigate immigration-related phenomena in Italy. In 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). IEEE, 1–7. DOI: .Google Scholar
Cross Ref
- S. Folkman and R. S. Lazarus. 1984. Stress, Appraisal, and Coping. Springer Publishing Company, New York. DOI: .Google Scholar
Cross Ref
- M. Fölster, U. Hess, and K. Werheid. 2014. Facial age affects emotional expression decoding. Front. Psychol. 5, 30. DOI: .Google Scholar
Cross Ref
- M. Franek. 2013. Environmental factors influencing pedestrian walking speed. Percept. Mot. Skills 116, 3, 992–1019. ISSN: 0031-5125. DOI: .Google Scholar
Cross Ref
- C. P. Friedman, A. S. Elstein, F. M. Wolf, G. C. Murphy, T. M. Franz, P. S. Heckerling, P. L. Fine, T. M. Miller, and V. Abraham. 1999. Enhancement of clinicians’ diagnostic reasoning by computer-based consultation: A multisite study of 2 systems. JAMA 282, 19, 1851–1856. DOI: .Google Scholar
Cross Ref
- H. Frumkin, L. Frank, and R. J. Jackson. July. 2004. Urban Sprawl and Public Health: Designing, Planning, and Building for Healthy Communities. Island Press. ISBN: 978-1-59726-631-4. Google-Books-ID: Xk06al1sAmUC.Google Scholar
- J. Fugate, H. Gouzoules, and L. F. Barrett. 2010. Reading chimpanzee faces: Evidence for the role of verbal labels in categorical perception of emotion. Emotion 10, 4, 544.Google Scholar
Cross Ref
- T. Fukuda, J. Taguri, F. Arai, M. Nakashima, D. Tachibana, and Y. Hasegawa. 2002. Facial expression of robot face for human–robot mutual communication. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), Vol. 1. IEEE, 46–51.Google Scholar
- A. Furnham, S. C. Richards, and D. L. Paulhus. 2013. The Dark Triad of personality: A 10 year review. Soc. Personal. Psychol. Compass 7, 3, 199–216. DOI: .Google Scholar
Cross Ref
- I. Gabriel. 2020. Artificial intelligence, values, and alignment. Minds Mach. 30, 3, 411–437. DOI: .Google Scholar
Digital Library
- V. Gallese, C. Keysers, and G. Rizzolatti. 2004. A unifying view of the basis of social cognition. Trends Cogn. Sci. 8, 9, 396–403. DOI: .Google Scholar
Cross Ref
- M. Garbarino, M. Lai, D. Bender, R. W. Picard, and S. Tognetti. November. 2014. Empatica E3—A wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In 2014 4th International Conference on Wireless Mobile Communication and Healthcare—Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH). 39–42. DOI: .Google Scholar
Cross Ref
- R. Garg and S. Sengupta. 2020. He is just like me: A study of the long-term use of smart speakers by parents and children. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 1, 1–24. DOI: .Google Scholar
Digital Library
- P. Gebhard. 2005. ALMA: A layered model of affect. In Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems. ACM, 29–36. DOI: .Google Scholar
Digital Library
- A. Gebhart and M. Price. 2020. The best nest and google assistant devices in 2020. Accessed September 18, 2020, https://www.cnet.com/news/best-home-security-cameras-of-2020-arlo-google-nest-and-more/.Google Scholar
- M. Gerlach, B. Farb, W. Revelle, and L. A. Nunes Amaral. 2018. A robust data-driven approach identifies four personality types across four large data sets. Nat. Human Behav. 2, 10, 735–742.Google Scholar
Cross Ref
- A. Ghandeharioun and R. Picard. 2017. BrightBeat: Effortlessly influencing breathing for cultivating calmness and focus. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA’17. Association for Computing Machinery. New York, NY, 1624–1631. ISBN: 9781450346566. DOI: .Google Scholar
Digital Library
- A. Ghandeharioun, A. Azaria, S. Taylor, and R. W. Picard. 2016. “kind and grateful”: A context-sensitive smartphone app utilizing inspirational content to promote gratitude. Psychol. Well Being. 6, 1, 1–21. DOI: .Google Scholar
Cross Ref
- A. Ghandeharioun, D. McDuff, M. Czerwinski, and K. Rowan. 2019. EMMA: An emotion-aware wellbeing chatbot. In 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII). 1–7.Google Scholar
- G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan. 2008. Private queries in location based services: Anonymizers are not necessary. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. 121–132. DOI: .Google Scholar
Digital Library
- X. Glorot, A. Bordes, and Y. Bengio. 2011. Domain adaptation for large-scale sentiment classification: A deep learning approach. In Proceedings of the 28th International Conference on Machine Learning (ICML-11). 513–520. Google Scholar
Digital Library
- K. Goddard, A. Roudsari, and J. C. Wyatt. 2012. Automation bias: A systematic review of frequency, effect mediators, and mitigators. J. Am. Med. Inform. Assoc. 19, 1, 121–127. DOI: .Google Scholar
Cross Ref
- A. L. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. C. Ivanov, R. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. 2000. Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation 101, 23, e215–e220. DOI: .Google Scholar
Cross Ref
- S. Golestan, P. Soleiman, and H. Moradi. 2018. A comprehensive review of technologies used for screening, assessment, and rehabilitation of autism spectrum disorder. arXiv preprint arXiv:1807.10986.Google Scholar
- M. Gönen and E. Alpaydin. 2011. Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211–2268. ISSN: 15324435. Google Scholar
Digital Library
- S. Góngora Alonso, S. Hamrioui, I. de la Torre Díez, E. Motta Cruz, M. López-Coronado, and M. Franco. 2018. Social robots for people with aging and dementia: A systematic review of literature. Telemed E-Health 257, 533–540. DOI: .Google Scholar
Cross Ref
- D. Good. 2000. Individuals, interpersonal relations, and trust. In Trust: Making and breaking cooperative relations. Department of Sociology, University of Oxford, Oxford, UK, 31–48.Google Scholar
- J. Gorbova, I. Lusi, A. Litvin, and G. Anbarjafari. 2017. Automated screening of job candidate based on multimodal video processing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 29–35. DOI: .Google Scholar
Cross Ref
- D. Gordeev and R. Potapova. 2016. Detecting state of aggression in sentences using CNN. In International Conference on Speech and Computer. Springer, 240–245.Google Scholar
- K. Gotham, S. Risi, A. Pickles, and C. Lord. 2007. The Autism Diagnostic Observation Schedule: Revised algorithms for improved diagnostic validity. J. Autism Dev. Disord. 37, 4, 613. DOI: .Google Scholar
Cross Ref
- M. Goudbeek and K. Scherer. 2010. Beyond arousal: Valence and potency/control cues in the vocal expression of emotion. J. Acoust. Soc. Am. 128, 3, 1322–1336. DOI: .Google Scholar
Cross Ref
- D. Govind and S. M. Prasanna. 2013. Expressive speech synthesis: A review. Int. J. Speech Technol. 16, 2, 237–260. DOI: .Google Scholar
Digital Library
- A. A. Grandey, L. Houston III, and D. R. Avery. 2019. Fake it to make it? Emotional labor reduces the racial disparity in service performance judgments. J. Manag. 45, 5, 2163–2192. DOI: .Google Scholar
Cross Ref
- D. Grandjean, D. Sander, and K. R. Scherer. 2008. Conscious emotional experience emerges as a function of multilevel, appraisal-driven response synchronization. Conscious. Cogn. 17, 2, 484–495. DOI: .Google Scholar
Cross Ref
- E. Granholm and S. R. Steinhauer. March. 2004. Pupillometric measures of cognitive and emotional processes. In Int. J. Psychophysiol. 52, 1–6. DOI: .Google Scholar
Cross Ref
- A. Graves, S. Fernández, and J. Schmidhuber. 2005. Bidirectional LSTM networks for improved phoneme classification and recognition. In International Conference on Artificial Neural Networks. Springer, 799–804. Google Scholar
Digital Library
- K. H. Greenaway, E. K. Kalokerinos, and L. A. Williams. June. 2018. Context is everything (in emotion research). Soc. Personal. Psychol. Compass 12, 6, e12393. ISSN: 17519004. DOI: .Google Scholar
Cross Ref
- S. Greene, H. Thapliyal, and A. Caban-Holt. 2016. A survey of affective computing for stress detection: Evaluating technologies in stress detection for better health. IEEE Consum. Electron. Mag. 5, 4, 44–56. DOI: .Google Scholar
Cross Ref
- F. Grond, R. Motta-Ochoa, N. Miyake, T. Tembeck, M. Park, and S. Blain-Moraes. 2019. Participatory design of affective technology: Interfacing biomusic and autism. IEEE Trans. Affect. Comput. DOI: .Google Scholar
Cross Ref
- C. T. Gross and N. S. Canteras. 2012. The many paths to fear. Nat. Rev. Neurosci. 13, 9, 651. DOI: .Google Scholar
Cross Ref
- H.-M. Gross, A. Scheidig, K. Debes, E. Einhorn, M. Eisenbach, S. Mueller, T. Schmiedel, T. Q. Trinh, C. Weinrich, T. Wengefeld, and A. Bley. 2017. ROREAS: Robot coach for walking and orientation training in clinical post-stroke rehabilitation—Prototype implementation and evaluation in field trials. Auton. Robots 41, 3, 679–698. DOI: .Google Scholar
Digital Library
- H. Gunes, B. Schuller, M. Pantic, and R. Cowie. 2011. Emotion representation, analysis and synthesis in continuous space: A survey. In Face and Gesture 2011. IEEE, 827–834. DOI: .Google Scholar
Cross Ref
- F. Guo, F. Li, W. Lv, L. Liu, and V. G. Duffy. 2020. Bibliometric analysis of affective computing researches during 1999~2018. Int. J. Hum. Comput. Interact. 36, 9, 801–814. DOI: .Google Scholar
Cross Ref
- I. Gupta, J. Healey, and G. Theocharous. 2019. Sense-able lunch recommendations. In Proceedings of the 21st International Conference on Human–Computer Interaction with Mobile Devices and Services, MobileHCI’19. Association for Computing Machinery, New York, NY. ISBN: 9781450368254. DOI: .Google Scholar
Digital Library
- B. Guthier, R. Alharthi, R. Abaalkhail, and A. El Saddik. November. 2014. Detection and visualization of emotions in an affect-aware city. In Proceedings of the 1st International Workshop on Emerging Multimedia Applications and Services for Smart Cities, EMASC’14. Association for Computing Machinery, Orlando, FL, 23–28. ISBN: 978-1-4503-3126-5. DOI: .Google Scholar
Digital Library
- R. E. Haamer, E. Rusadze, I. Lüsi, T. Ahmed, S. Escalera, and G. Anbarjafari. July. 2018. Review on emotion recognition databases. In Human–Robot Interaction—Theory and Application. InTech. DOI: .Google Scholar
Cross Ref
- R. S. Hag Ali and N. El Gayar. 2019. Sentiment analysis using unlabeled email data. In 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). 328–333.Google Scholar
- A. G. Halberstadt and F. T. Lozada. 2011. Emotion development in infancy through the lens of culture. Emot. Rev. 3, 2, 158–168. DOI: .Google Scholar
Cross Ref
- A. G. Halberstadt, S. A. Denham, and J. C. Dunsmore. 2001. Affective social competence. Soc. Dev. 10, 1, 79–119. DOI: .Google Scholar
Cross Ref
- M. A. Hall. 1999. Correlation-based feature selection for machine learning. PhD thesis, University of Waikato Hamilton. https://www.cs.waikato.ac.nz/ml/publications/1999/99MH-Thesis.pdf.Google Scholar
- M. Hamilton. 1960. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23, 56–62. ISSN: 00223050. DOI: .Google Scholar
Cross Ref
- S. Han, J. S. Lerner, and D. Keltner. 2007. Feelings and consumer decision making: The Appraisal-Tendency Framework. J. Consum. Psychol. 17, 3, 158–168. DOI: .Google Scholar
Cross Ref
- S. L. Handy, M. G. Boarnet, R. Ewing, and R. E. Killingsworth. August. 2002. How the built environment affects physical activity: Views from urban planning. Am. J. Prev. Med. 23, 2, Supplement 1, 64–73. ISSN: 0749-3797. http://www.sciencedirect.com/science/article/pii/S0749379702004750. DOI: .Google Scholar
Cross Ref
- R. D. Hare. 2003. The Hare Psychopathy Checklist Revised (2nd. ed.). Multi-Health Systems.Google Scholar
- E. Hatfield, J. T. Cacioppo, and R. L. Rapson. 1993. Emotional contagion. Curr. Dir. Psychol. Sci. 2, 3, 96–100. DOI: .Google Scholar
Cross Ref
- J. Hawkins. 2017. Special report: Can we copy the brain?—What intelligent machines need to learn from the neocortex. IEEE Spectr. 54, 6, 34–71. DOI: .Google Scholar
Digital Library
- J. Healey. 2011. Recording affect in the field: Towards methods and metrics for improving ground truth labels. In S. K. D’Mello, A. C. Graesser, B. W. Schuller, and J. Martin (Eds.), Affective Computing and Intelligent Interaction—4th International Conference, ACII 2011. Memphis, TN, October 9–12, 2011, Proceedings, Part I, Vol. 6974 of Lecture Notes in Computer Science. Springer, 107–116. DOI: .Google Scholar
Digital Library
- J. Healey and B. Logan. October. 2005. Wearable wellness monitoring using ECG and accelerometer data—IEEE Conference Publication. IEEE, Osaka, Japan. ISBN: 0-7695-2419-2. https://ieeexplore.ieee.org/abstract/document/1550820. DOI: .Google Scholar
Digital Library
- J. Healey and R. W. Picard. 1998. StartleCam: A cybernetic wearable camera. In Proceedings of the 2nd IEEE International Symposium on Wearable Computers. Pittsburgh, 42–49. Google Scholar
Digital Library
- J. Healey and R. Picard. June. 2005. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6, 2, 156–166. ISSN: 1558-0016. Conference name: IEEE Transactions on Intelligent Transportation Systems. DOI: .Google Scholar
Digital Library
- J. Healey, G. Theocharous, and B. Kveton. 2010a. Does my driving scare you? In Adjunct Proceeding of 2nd International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2010), AutomotiveUI’10. ACM, Pittsburgh, PA.Google Scholar
- J. Healey, L. Nachman, S. Subramanian, J. Shahabdeen, and M. Morris. 2010b. Out of the lab and into the fray: Towards modeling emotion in everyday life. In Proceedings of the 8th International Conference on Pervasive Computing, Pervasive’10. Springer-Verlag, Berlin, 156–173. ISBN: 3642126537. DOI: .Google Scholar
Digital Library
- J. Healey, B. Chamberlain, L. Tian, A. Sano, and W. Hsu. 2020. 4th IJCAI Workshop on Artificial Intelligence in Affective Computing. https://sites.google.com/usu.edu/affcomp2020.Google Scholar
- H. Health, G. W. Evans, J. M. Mccoy, and M. Mccoy. 1998. When Buildings Don’t Work: The Role of Architecture in Human Health.Google Scholar
- F. Hegel, C. Muhl, B. Wrede, M. Hielscher-Fastabend, and G. Sagerer. 2009. Understanding social robots. In 2009 Second International Conferences on Advances in Computer–Human Interactions. IEEE, 169–174. DOI: .Google Scholar
Digital Library
- A. Heimerl, T. Baur, F. Lingenfelser, J. Wagner, and E. André. 2019. NOVA—A tool for eXplainable cooperative machine learning. In 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, 109–115.Google Scholar
- J. Henrich, S. J. Heine, and A. Norenzayan. 2010. The weirdest people in the world? Behav. Brain Sci. 33, 2–3, 61–83. DOI: .Google Scholar
Cross Ref
- J. C. Henry. 2006. Electroencephalography: Basic principles, clinical applications, and related fields, fifth edition. Neurology 67, 11, 2092–2092. ISSN: 0028-3878. DOI: .Google Scholar
Cross Ref
- J. Hernandez, D. McDuff, and R. W. Picard. December. 2015. Biowatch: Estimation of heart and breathing rates from wrist motions. In Proceedings of the 2015 9th International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2015. Institute of Electrical and Electronics Engineers Inc., 169–176. ISBN: 9781631900457. DOI: .Google Scholar
Digital Library
- B. Herrmann, C. Thöni, and S. Gächter. 2008. Antisocial punishment across societies. Science 319, 5868, 1362–1367. DOI: .Google Scholar
Cross Ref
- S. Herse, J. Vitale, M. Tonkin, D. Ebrahimian, S. Ojha, B. Johnston, W. Judge, and M.-A. Williams. 2018. Do you trust me, blindly? Factors influencing trust towards a robot recommender system. In 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE, 7–14. DOI: .Google Scholar
Digital Library
- M. J. Hertenstein, R. Holmes, M. McCullough, and D. Keltner. 2009. The communication of emotion via touch. Emotion 9, 4, 566–573. DOI: .Google Scholar
Cross Ref
- C. Heyes. 2018. Empathy is not in our genes. Neurosci. Biobehav. Rev. 95, 499–507. DOI: .Google Scholar
Cross Ref
- G. E. Hinton and R. R. Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science 313, 504–507. ISSN: 00368075. DOI: .Google Scholar
Cross Ref
- S. Hoermann, K. L. McCabe, D. N. Milne, and R. A. Calvo. 2017. Application of synchronous text-based dialogue systems in mental health interventions: Systematic review. J. Med. Internet Res. 19, 8. DOI: .Google Scholar
Cross Ref
- G. Hoffman. 2019. Anki, Jibo, and Kuri: What we can learn from social robots that didn’t make it. IEEE Spectrum. https://spectrum.ieee.org/anki-jibo-and-kuri-what-we-can-learn-from-social-robotics-failures.Google Scholar
- G. Hoffman and X. Zhao. 2020. A primer for conducting experiments in human–robot interaction. ACM Trans. Hum. Robot Interact. 10, 1, 1–31. Google Scholar
Digital Library
- R. R. Hoffman, S. T. Mueller, G. Klein, and J. Litman. 2018. Metrics for explainable AI: Challenges and prospects. arXiv preprint arXiv:1812.04608.Google Scholar
- S. S. Honig and T. Oron-Gilad. 2018. Understanding and resolving failures in human–robot interaction: Literature review and model development. Front. Psychol. 9, 861. DOI: .Google Scholar
Cross Ref
- M. E. Hoque, D. J. McDuff, and R. W. Picard. 2012. Exploring temporal patterns in classifying frustrated and delighted smiles. IEEE Trans. Affect. Comput. 3, 323–334 ISSN: 19493045. DOI: .Google Scholar
Digital Library
- H. Hotelling. 1933. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441. ISSN: 00220663. DOI: .Google Scholar
Cross Ref
- K. Hovsepian, M. Al’absi, E. Ertin, T. Kamarck, M. Nakajima, and S. Kumar. 2015. Cstress: Towards a gold standard for continuous stress assessment in the mobile environment. In UbiComp 2015—Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ISBN: 9781450335744. DOI: .Google Scholar
Digital Library
- A. Howard, C. Zhang, and E. Horvitz. 2017. Addressing bias in machine learning algorithms: A pilot study on emotion recognition for intelligent systems. In 2017 IEEE Workshop on Advanced Robotics and Its Social Impacts (ARSO). IEEE, 1–7.Google Scholar
- Y. Huang and S. M. Khan. 2017. DyadGAN: Generating facial expressions in dyadic interactions. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2259–2266. DOI: .Google Scholar
Cross Ref
- Z. Huang, M. Dong, Q. Mao, and Y. Zhan. 2014. Speech emotion recognition using CNN. In Proceedings of the 22nd ACM International Conference on Multimedia. ACM, 801–804. DOI: .Google Scholar
Digital Library
- J. Huberty, J. Green, C. Glissmann, L. Larkey, M. Puzia, and C. Lee. 2019. Efficacy of the mindfulness meditation mobile app “Calm” to reduce stress among college students: Randomized controlled trial. JMIR Mhealth Uhealth, 7, 6, e14273. DOI: .Google Scholar
Cross Ref
- E. Hudlicka. 2008. Affective computing for game design. In Proceedings of the 4th Intl. North American Conference on Intelligent Games and Simulation. McGill University Montreal, 5–12.Google Scholar
- C. L. Hull. 1943. Principles of Behavior. D. Appleton-Century, New York.Google Scholar
- C. L. Hull. 1951. Essentials of Behavior. Yale University Press, New Haven, CT.Google Scholar
- C. L. Hull. 1952. A Behavior System: An Introduction to Behavior Theory Concerning the Individual Organism. Yale University Press, New Haven, CT.Google Scholar
- S. Humphrey, A. Faghri, and M. Li. 2013. Health and transportation: The dangers and prevalence of road rage within the transportation system. Am. J. Civ. Eng. Arch. 1 (6), 156–163. ISSN: 2328-3998. http://pubs.sciepub.com/ajcea/1/6/5. DOI: .Google Scholar
Cross Ref
- C. Hutto and E. Gilbert. 2014. VADER: A parsimonious rule-based model for sentiment analysis of social media text. Proc. Int. AAAI Conf. Web Soc. Media 8, 1, 216–225.Google Scholar
- O. Ignatyeva, D. Sokolov, O. Lukashenko, A. Shalakitskaia, S. Denef, and T. Samsonowa. 2019. Business models for emerging technologies: The case of affective computing. In 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). IEEE, 350–355.Google Scholar
- T. Iio, M. Shiomi, K. Shinozawa, K. Shimohara, M. Miki, and N. Hagita. 2015. Lexical entrainment in human robot interaction. Int. J. Soc. Robot. 7 (2), 253–263. DOI: .Google Scholar
Cross Ref
- R. T. Ionescu, M. Popescu, and C. Grozea. 2013. Local learning to improve bag of visual words model for facial expression recognition. In Workshop on Challenges in Representation Learning, ICML. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.662.4620&rep=rep1&type=pdf.Google Scholar
- B. Irfan, A. Ramachandran, S. Spaulding, D. F. Glas, I. Leite, and K. L. Koay. 2019. Personalization in long-term human–robot interaction. In 2019 14th ACM/IEEE International Conference on Human–Robot Interaction (HRI). IEEE, 685–686. Google Scholar
Digital Library
- B. Irfan, A. Ramachandran, S. Spaulding, S. Kalkan, G. I. Parisi, and H. Gunes. 2021. Lifelong learning and personalization in long-term human–robot interaction (LEAP-HRI). In Companion of the 2021 ACM/IEEE International Conference on Human–Robot Interaction. 724–727. DOI: .Google Scholar
Digital Library
- L. I. Ismail, T. Verhoeven, J. Dambre, and F. Wyffels. 2019. Leveraging robotics research for children with autism: A review. Int. J. Soc. Robot. 11 (3), 389–410.Google Scholar
Cross Ref
- G. Iyengar, H. J. Nock, and C. Neti. 2003. Audio-visual synchrony for detection of monologues in video archives. In 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP’03), Vol. 5. IEEE, V–772.Google Scholar
- A. B. Jacobs. September. 1993. Great streets. ACCESS Mag. 1 (3), 23–27. https://escholarship.org/uc/item/3t62h1fv.Google Scholar
- A. Jaimes and N. Sebe. 2007. Multimodal human–computer interaction: A survey. Comput. Vis. Image Underst. 108 (1–2), 116–134. DOI: .Google Scholar
Digital Library
- L. G. Jaimes, M. Llofriu, and A. Raij. 2015. PREVENTER, a selection mechanism for just-in-time preventive interventions. IEEE Trans. Affect. Comput. 7 (3), 243–257. DOI: .Google Scholar
Digital Library
- A. Jain. 1997. Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19 (2), 153–158. ISSN: 01628828. DOI: .Google Scholar
Digital Library
- R. Jain and S. Bagdare. 2011. Music and consumption experience: A review. Int. J. Retail. Distrib. Manag. 39 (4), 289–302. DOI: .Google Scholar
Cross Ref
- W. James. 1992. Writings, 1878–1899. Library of America. Library of America. ISBN: 9780940450721. https://books.google.com/books?id=rr6kPc52tI4C.Google Scholar
- N. Jaques, S. Taylor, A. Azaria, A. Ghandeharioun, A. Sano, and R. Picard. 2015a. Predicting students’ happiness from physiology, phone, mobility, and behavioral data. In 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), 222–228. Google Scholar
Digital Library
- N. Jaques, S. Taylor, A. Sano, and R. Picard. 2015b. Multi-task, multi-kernel learning for estimating individual wellbeing. In Multimodal Machine Learning Workshop in Conjunction with NIPS.Google Scholar
- N. Jaques, S. Taylor, A. Sano, and R. Picard. October. 2017. Multimodal autoencoder: A deep learning approach to filling in missing sensor data and enabling better mood prediction. In 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, 202–208. ISBN: 978-1-5386-0563-9. http://ieeexplore.ieee.org/document/8273601/. DOI: .Google Scholar
Cross Ref
- N. Jaques, A. Lazaridou, E. Hughes, C. Gulcehre, P. A. Ortega, D. J. Strouse, J. Z. Leibo, and N. de Freitas. 2019. Social influence as intrinsic motivation for multi-agent deep reinforcement learning. In Proceedings of the 36th International Conference on Machine Learning.Google Scholar
- S. Järvelä, D. Gašević, T. Seppänen, M. Pechenizkiy, and P. A. Kirschner. 2020. Bridging learning sciences, machine learning and affective computing for understanding cognition and affect in collaborative learning. Br. J. Educ. Technol. 51 (6), 2391–2406. DOI: .Google Scholar
Cross Ref
- S. Jeong and C. L. Breazeal. 2016. Improving smartphone users’ affect and wellbeing with personalized positive psychology interventions. In HAI 2016 Proceedings of the Fourth International Conference on Human Agent Interaction. Google Scholar
Digital Library
- S. Jerritta, M. Murugappan, R. Nagarajan, and K. Wan. March. 2011. Physiological signals based human emotion recognition: A review. In 2011 IEEE 7th International Colloquium on Signal Processing and its Applications. IEEE, 410–415. ISBN: 978-1-61284-414-5. http://ieeexplore.ieee.org/document/5759912/. DOI: .Google Scholar
Cross Ref
- S. Ji, Z. Wang, Q. Liu, and X. Liu. 2016. Classification algorithms for privacy preserving in data mining: A survey. In Advances in Computer Science and Ubiquitous Computing. Springer, 312–322.Google Scholar
- X. Jia, K. Li, X. Li, and A. Zhang. 2014. A novel semi-supervised deep learning framework for affective state recognition on EEG signals. In 2014 IEEE International Conference on Bioinformatics and Bioengineering. IEEE, 30–37. DOI: .Google Scholar
Digital Library
- B. Jiang and C. Claramunt. 2002. Integration of space syntax into GIS: New perspectives for urban morphology. Trans GIS 6 (3), 295–309. ISSN: 1467-9671. https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9671.00112. DOI: . _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9671.00112.Google Scholar
Cross Ref
- S. Jirayucharoensak, S. Pan-Ngum, and P. Israsena. 2014. EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci. World J. 2014. DOI: .Google Scholar
Cross Ref
- S. Joglekar, D. Quercia, M. Redi, L. M. Aiello, T. Kauer, and N. Sastry. 2020. FaceLift: A transparent deep learning framework to beautify urban scenes. R. Soc. Open Sci. 7 (1), 190987. https://royalsocietypublishing.org/doi/full/10.1098/rsos.190987. DOI: .Google Scholar
Cross Ref
- D. G. Johnson and J. M. Mulvey. 1995. Accountability and computer decision systems. Commun. ACM 38 (12), 58–64. DOI: .Google Scholar
Digital Library
- G. R. Jones and J. M. George. 1998. The experience and evolution of trust: Implications for cooperation and teamwork. Acad. Manag. Rev. 23 (3), 531–546. DOI: .Google Scholar
Cross Ref
- J. P. Jones and L. A. Palmer. 1987. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. ISSN: 00223077. DOI: .Google Scholar
Cross Ref
- A. J. Jones and J. Pitt. 2011. On the classification of emotions and its relevance to the understanding of trust. In Proc. Work. Trust Agent Soc. 10th Int. Conf. Auton. Agents Multi-Agent Sys (AAMAS 2011). 69–82.Google Scholar
- M. F. Jung. 2017. Affective grounding in human–robot interaction. In Proceedings of the 2017 ACM/IEEE International Conference on Human–Robot Interaction. ACM, 263–273. DOI: .Google Scholar
Digital Library
- M. Jung and P. Hinds. May. 2018. Robots in the wild: A time for more robust theories of human–robot interaction. ACM Trans. Hum. Robot Interact. 7 (1). DOI: .Google Scholar
Digital Library
- S. E. Kahou, X. Bouthillier, P. Lamblin, C. Gulcehre, V. Michalski, K. Konda, S. Jean, P. Froumenty, Y. Dauphin, N. Boulanger-Lewandowski, R. Chandias Ferrari, M. Mirza, D. Warde-Farley, A. Courville, P. Vincent, R. Memisevic, C. Pal, and Y. Bengio. June. 2016. EmoNets: Multimodal deep learning approaches for emotion recognition in video. J. Multimodal User Interfaces 10 (2), 99–111. ISSN 17838738. DOI: .Google Scholar
Cross Ref
- S. E. Kahou, C. Pal, X. Bouthillier, P. Froumenty, Ç. Gülçehre, R. Memisevic, P. Vincent, Courville, Y. Bengio, R. C. Ferrari, M. Mirza, S. Jean, P. L. Carrier, Y. Dauphin, N. Boulanger-Lewandowski, A. Aggarwal, J. Zumer, P. Lamblin, J. P. Raymond, G. Desjardins, R. Pascanu, D. Warde-Farley, A. Torabi, A. Sharma, E. Bengio, K. R. Konda, and Z. Wu. 2013. Combining modality specific deep neural networks for emotion recognition in video. In ICMI 2013—Proceedings of the 2013 ACM International Conference on Multimodal Interaction. ISBN: 9781450321297. DOI: .Google Scholar
Digital Library
- T. Kalayci and O. Ozdamar. 1995. Wavelet preprocessing for automated neural network detection of EEG spikes. IEEE Eng. Med. Biol. Soc. 14 (2). 160–166. DOI: .Google Scholar
Cross Ref
- E. Kalbe, M. Schlegel, A. T. Sack, D. A. Nowak, M. Dafotakis, C. Bangard, M. Brand, S. Shamay-Tsoory, O. A. Onur, and J. Kessler. 2010. Dissociating cognitive from affective theory of mind: A TMS study. Cortex 46 (6), 769–780.Google Scholar
Cross Ref
- N. Kalchbrenner, E. Grefenstette, and P. Blunsom. 2014. A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188.Google Scholar
- R. E. Kaliouby and P. Robinson. 2004. Real-time inference of complex mental states from facial expressions and head gestures. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. DOI: .Google Scholar
Digital Library
- T. Kanade. 1977. Computer Recognition of Human Faces, Vol. 47. Birkhäuser Verlag, Basel and Stuttgart. DOI: .Google Scholar
Cross Ref
- T. Kanade, J. F. Cohn, and Y. Tian. 2000. Comprehensive database for facial expression analysis. In Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture. 46–53. DOI: .Google Scholar
Digital Library
- A. Kapur, A. Kapur, N. Virji-Babul, G. Tzanetakis, and P. F. Driessen. 2005. Gesture-based affective computing on motion capture data. In International Conference on Affective Computing and Intelligent Interaction. Springer, 1–7. DOI: .Google Scholar
Digital Library
- Y. Kato, T. Kanda, and H. Ishiguro. 2015. May I help you?—Design of human-like polite approaching behavior. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human–Robot Interaction. ACM, 35–42. DOI: .Google Scholar
Digital Library
- J. Kätsyri, M. Mäkäräinen, and T. Takala. 2017. Testing the ‘uncanny valley’ hypothesis in semirealistic computer-animated film characters: An empirical evaluation of natural film stimuli. Int. J. Hum. Comput. Stud. 97, 149–161. DOI: .Google Scholar
Cross Ref
- T. Kauer, S. Joglekar, M. Redi, L. M. Aiello, and D. Quercia. September. 2018. Mapping and visualizing deep-learning urban beautification. IEEE Computer Graphics and Applications, 38 (5), 70–83. ISSN: 1558-1756. DOI: .Google Scholar
Cross Ref
- P. Kawde and G. K. Verma. 2017. Deep belief network based affect recognition from physiological signals. In 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON). IEEE, 587–592. DOI: .Google Scholar
Cross Ref
- A. Kazemzadeh, S. Lee, P. G. Georgiou, and S. S. Narayanan. 2011. Emotion twenty questions: Toward a crowd-sourced theory of emotions. In Affective Computing and Intelligent Interaction. Springer, 1–10. DOI: .Google Scholar
Digital Library
- L. C. Kegel, P. Brugger, S. Frü hholz, T. Grunwald, P. Hilfiker, O. Kohnen, M. L. Loertscher, D. Mersch, A. Rey, T. Sollfrank, B. K. Steiger, J. Sternagel, M. Weber, and H. Jokeit. 2020. Dynamic human and avatar facial expressions elicit differential brain responses. Soc. Cogn. Affect. Neurosci. 15 (3), 303–317. DOI: .Google Scholar
Cross Ref
- D. Keltner, J. L. Tracy, D. Sauter, and A. Cowen. 2019. What basic emotion theory really says for the twenty-first century study of emotion. J. Nonverbal. Behav. 43 (2), 195–201.Google Scholar
Cross Ref
- S. Kemp. 2020. Digital trends 2020: Every single stat you need to know about the internet. Retrieved September 8, 2020, from https://thenextweb.com/growth-quarters/2020/01/30/digital-trends-2020-every-single-stat-you-need-to-know-about-the-internet/.Google Scholar
- M. Keramati and B. Gutkin. 2011. A reinforcement learning theory for homeostatic regulation. In Proceedings of the 24th International Conference on Neural Information Processing Systems, NIPS’11. Curran Associates Inc., Red Hook, NY, 82–90. ISBN: 9781618395993. Google Scholar
Digital Library
- M. Keramati and B. Gutkin. December. 2014. Homeostatic reinforcement learning for integrating reward collection and physiological stability. eLife 3, e04811. ISSN: 2050-084X. DOI: .Google Scholar
Cross Ref
- G. Keren, T. Kirschstein, E. Marchi, F. Ringeval, and B. Schuller. 2017. End-to-end learning for dimensional emotion recognition from physiological signals. In 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 985–990.Google Scholar
- S. J. Kessler, F. Jiang, and R. A. Hurley. 2020. The state of automated facial expression analysis (AFEA) in evaluating consumer packaged beverages. Beverages 6 (2), 27. DOI: .Google Scholar
Cross Ref
- S. Khadka, S. Majumdar, T. Nassar, Z. Dwiel, E. Tumer, S. Miret, Y. Liu, and K. Tumer. 2019. Collaborative evolutionary reinforcement learning. In International Conference on Machine Learning. PMLR, 3341–3350.Google Scholar
- A. R. Kherlopian, J. P. Gerrein, M. Yue, K. E. Kim, J. W. Kim, M. Sukumaran, and P. Sajda. 2006. Electrooculogram based system for computer control using a multiple feature classification model. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1295–1298.Google Scholar
- J. Kim and W. Winkler. 2003. Multiplicative noise for masking continuous data. Statistics 1, 9.Google Scholar
- K. H. Kim, S. W. Bang, and S. R. Kim. May. 2004. Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 42 (3), 419–427. ISSN: 0140-0118. http://link.springer.com/10.1007/BF02344719. DOI: .Google Scholar
Cross Ref
- E. O. Kimbrough and A. Vostroknutov. 2016. Norms make preferences social. J. Eur. Econ. Assoc. 14 (3), 608–638. DOI: .Google Scholar
Cross Ref
- R. Kirby, J. Forlizzi, and R. Simmons. 2010. Affective social robots. Rob. Auton. Syst. 58 (3), 322–332. Google Scholar
Digital Library
- D. Kirsch. 1997. The Sentic Mouse: Developing a Tool for Measuring Emotional Valence. Technical Report, MIT Media Laboratory Perceptual Computing Section.Google Scholar
- P. V. Klasnja, E. Hekler, S. Shiffman, A. Boruvka, D. Almirall, A. Tewari, and S. A. Murphy. 2015. Microrandomized trials: An experimental design for developing just-in-time adaptive interventions. Health Psychol. 34S, 1220–1228. DOI: .Google Scholar
Cross Ref
- J. Kleinberg, S. Mullainathan, and M. Raghavan. 2016. Inherent trade-offs in the fair determination of risk scores. arXiv preprint arXiv:1609.05807.Google Scholar
- A. Kleinsmith and N. Bianchi-Berthouze. 2013. Affective body expression perception and recognition: A survey. IEEE Trans. Affect. Comput. 4, 15–33. ISSN: 19493045. DOI: .Google Scholar
Digital Library
- R. Kohavi and G. H. John. 1997. Wrappers for feature subset selection. Artif. Intell. 97 (1–2), 273–324. DOI: .Google Scholar
Digital Library
- D. Kollias and S. Zafeiriou. 2019. Expression, affect, action unit recognition: Aff-Wild2, multi-task learning and ArcFace. arXiv preprint arXiv:1910.04855.Google Scholar
- D. Kollias, M. A. Nicolaou, I. Kotsia, G. Zhao, and S. Zafeiriou. 2017. Recognition of affect in the wild using deep neural networks. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on. IEEE, 1972–1979.Google Scholar
- D. Kollias, P. Tzirakis, M. A. Nicolaou, A. Papaioannou, G. Zhao, B. Schuller, I. Kotsia, and S. Zafeiriou. 2019. Deep affect prediction in-the-wild: Aff-Wild database and challenge, deep architectures, and beyond. Int. J. Comput. Vis. 127 (6–7), 907–929. DOI: .Google Scholar
Digital Library
- G. Konidaris and A. Barto. 2006. An adaptive robot motivational system. In Proceedings of the 9th International Conference on From Animals to Animats: Simulation of Adaptive Behavior, SAB’06. Springer-Verlag, Berlin, 346–356. ISBN: 3540386084. DOI: .Google Scholar
Digital Library
- G. Konidaris and A. Barto. 2009. Skill discovery in continuous reinforcement learning domains using skill chaining. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta (Eds.), Advances in Neural Information Processing Systems, Vol. 22. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2009/file/e0cf1f47118daebc5b16269099ad7347-Paper.pdf. Google Scholar
Digital Library
- O. Korn, N. Akalin, and R. Gouveia. 2021. Understanding cultural preferences for social robots: A study in German and Arab communities. ACM Trans. Hum. Robot Interact. 10 (2), 1–19. Google Scholar
Digital Library
- J. B. Kostis, A. Moreyra, M. Amendo, J. Di Pietro, N. Cosgrove, and P. Kuo. 1982. The effect of age on heart rate in subjects free of heart disease. Studies by ambulatory electrocardiography and maximal exercise stress test. Circulation 65 (1), 141–145. DOI: .Google Scholar
Cross Ref
- T. Kostoulas, M. Muszynski, T. Chaspari, and P. Amelidis. 2020. Multimodal affect and aesthetic experience. In Proceedings of the 2020 International Conference on Multimodal Interaction. 888–889. Google Scholar
Digital Library
- A. D. Kramer, J. E. Guillory, and J. T. Hancock. 2014. Experimental evidence of massive-scale emotional contagion through social networks. Proc. Natl. Acad. Sci. 111 (24), 8788–8790. DOI: .Google Scholar
Cross Ref
- J. Kranjec, S. Beguš, G. Geršak, and J. Drnovšek. 2014. Non-contact heart rate and heart rate variability measurements: A review. Biomed. Signal Process. Control. 13, 102–112. DOI: .Google Scholar
Cross Ref
- B. Kratzwald and S. Feuerriegel. 2019. Putting question–answering systems into practice: Transfer learning for efficient domain customization. ACM Trans. Manag. Inf. Syst. 9 (4), 1–20. DOI: .Google Scholar
Digital Library
- B. Kratzwald, S. Ilić, M. Kraus, S. Feuerriegel, and H. Prendinger. 2018. Deep learning for affective computing: Text-based emotion recognition in decision support. Decis. Support Syst. 115, 24–35. DOI: .Google Scholar
Cross Ref
- S. D. Kreibig. 2010. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 84 (3), 394–421. DOI: .Google Scholar
Cross Ref
- A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105. https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf. Google Scholar
Digital Library
- K. Kroenke and R. L. Spitzer. 2002. The PHQ-9: A new depression diagnostic and severity measure. Psychiatr. Ann. 32, 9, 509–515. DOI: .Google Scholar
Cross Ref
- J. A. Kroll. 2020. Accountability in computer systems. The Oxford Handbook of Ethics of AI. Oxford University Press, 181. DOI: .Google Scholar
Cross Ref
- S. Kujala. 2003. User involvement: A review of the benefits and challenges. Behav. Inf. Technol. 22 (1), 1–16. DOI: .Google Scholar
Cross Ref
- Y. Kwon, J.-H. Won, B. J. Kim, and M. C. Paik. 2020. Uncertainty quantification using Bayesian neural networks in classification: Application to biomedical image segmentation. Comput. Stat. Data Anal. 142, 106816. DOI: .Google Scholar
Digital Library
- C. Lacey and C. Caudwell. 2019. Cuteness as a ‘dark pattern’ in home robots. In 2019 14th ACM/IEEE International Conference on Human–Robot Interaction (HRI). IEEE, 374–381. DOI: .Google Scholar
Digital Library
- C. Lai, B. Alex, J. D. Moore, L. Tian, T. Hori, and G. Francesca. 2019. Detecting topic-oriented speaker stance in conversational speech. In Proceedings of INTERSPEECH 2019. 46–50. DOI: .Google Scholar
Cross Ref
- P. J. Lang, M. M. Bradley, and B. N. Cuthbert. 1997. International Affective Picture System (IAPS): Technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention, Gainesville, 39–58.Google Scholar
- A. Lanitis, C. J. Taylor, and T. F. Cootes. 1995. Automatic face identification system using flexible appearance models. Image Vis. Comput. 13, 5, 393–401. DOI: .Google Scholar
Cross Ref
- F. Larradet, R. Niewiadomski, G. Barresi, and L. S. Mattos. 2019. Appraisal theory-based mobile app for physiological data collection and labelling in the wild. In Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, 752–756. DOI: .Google Scholar
Digital Library
- F. Larradet, R. Niewiadomski, G. Barresi, D. G. Caldwell, and L. S. Mattos. July. 2020. Toward emotion recognition from physiological signals in the wild: Approaching the methodological issues in real-life data collection. Front. Psychol. 11, 1111. ISSN: 1664-1078. DOI: .Google Scholar
Cross Ref
- J. Larus. 2020. Joint statement on contact tracing: Date 19th April 2020. https://drive.google.com/file/d/1OQg2dxPu-x-RZzETlpV3lFa259Nrpk1J/view.Google Scholar
- P. A. Lasota, G. F. Rossano, and J. A. Shah. 2014. Toward safe close-proximity human–robot interaction with standard industrial robots. In 2014 IEEE International Conference on Automation Science and Engineering (CASE). IEEE, 339–344. DOI: .Google Scholar
Cross Ref
- T. Lattimore and C. Szepesvári. 2020. Bandit Algorithms. Cambridge University Press. ISBN: 9781108486828. https://books.google.com/books?id=bbjpDwAAQBAJ.Google Scholar
- B. P. L. Lau, S. H. Marakkalage, Y. Zhou, N. U. Hassan, C. Yuen, M. Zhang, and U.-X. Tan. December. 2019. A survey of data fusion in smart city applications. Inf. Fusion 52, 357–374. ISSN: 1566-2535. http://www.sciencedirect.com/science/article/pii/S1566253519300326. DOI: .Google Scholar
Digital Library
- G. Laurans, P. M. A. Desmet, and P. Hekkert. September. 2009. The emotion slider: A self-report device for the continuous measurement of emotion. In 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops. IEEE, 1–6. ISBN 978-1-4244-4800-5. http://ieeexplore.ieee.org/document/5349539/. DOI: .Google Scholar
Cross Ref
- R. S. Lazarus and R. S. Lazarus. 1991. Emotion and Adaptation. Oxford University Press on Demand. Ledalab. http://www.ledalab.de/.Google Scholar
- A. Ledgerwood, C. K. Soderberg, and J. Sparks. 2017. Designing a study to maximize informational value. In M. C. Makel and J. A. Plucker (Eds.), Toward A More Perfect Psychology: Improving Trust, Accuracy, And Transparency in Research. American Psychological Association, 33–58. DOI: .Google Scholar
Cross Ref
- J. Lee and N. Moray. 1992. Trust, control strategies and allocation of function in human–machine systems. Ergonomics 35, 10, 1243–1270. DOI: .Google Scholar
Cross Ref
- C. C. Lee, E. Mower, C. Busso, S. Lee, and S. Narayanan. 2011. Emotion recognition using a hierarchical binary decision tree approach. Speech Commun. 53, 9–10, 1162–1171. ISSN: 01676393. DOI: .Google Scholar
Digital Library
- J. S. Lerner and L. Z. Tiedens. 2006. Portrait of the angry decision maker: How appraisal tendencies shape anger’s influence on cognition. J. Behav. Decis. Mak. 19, 2, 115–137. DOI: .Google Scholar
Cross Ref
- J. S. Lerner, S. Han, and D. Keltner. 2007. Feelings and consumer decision making: Extending the Appraisal-Tendency Framework. J. Consum. Psychol. 17, 3, 181–187. DOI: .Google Scholar
Cross Ref
- R. Levitan, A. Gravano, L. Willson, S. Benus, J. Hirschberg, and A. Nenkova. 2012. Acoustic-prosodic entrainment and social behavior. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 11–19. Google Scholar
Digital Library
- M. Lewis. 2008. Self-conscious emotions-embarrassment, pride, shame, and guilt. In M. Lewis, J. Laviland-Jones, and L. Fildman Barret (Eds.), Handbook of Emotions, 3rd ed., The Guilford Press, 742–756.Google Scholar
- B. Li and A. Sano. 2020a. Extraction and interpretation of deep autoencoder-based temporal features from wearables for forecasting personalized mood, health, and stress. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 2, 1–26. ISSN: 24749567. DOI: .Google Scholar
Digital Library
- B. Li and A. Sano. July. 2020b. Early versus late modality fusion of deep wearable sensor features for personalized prediction of tomorrow’s mood, health, and stress. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC). IEEE, 5896–5899. ISBN: 978-1-7281-1990-8. https://ieeexplore.ieee.org/document/9175463/. DOI: .Google Scholar
Cross Ref
- Y. Li and N. Vasconcelos. 2019. Repair: Removing representation bias by dataset resampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9572–9581.Google Scholar
- N. Li, T. Li, and S. Venkatasubramanian. 2007. t-Closeness: Privacy beyond k-anonymity and l-diversity. In 2007 IEEE 23rd International Conference on Data Engineering. IEEE, 106–115. DOI: .Google Scholar
Cross Ref
- C. Li, C. Xu, and Z. Feng. 2016. Analysis of physiological for emotion recognition with the IRS model. Neurocomputing 178, 103–111. DOI: .Google Scholar
Digital Library
- T. Li, Y. Baveye, C. Chamaret, E. Dellandréa, and L. Chen. 2015. Continuous arousal self-assessments validation using real-time physiological responses. In Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia. ACM, 39–44. DOI: .Google Scholar
Digital Library
- P. Liao, K. Greenewald, P. V. Klasnja, and S. Murphy. 2019. Personalized heartsteps: A reinforcement learning algorithm for optimizing physical activity. ArXiv, abs/1909.03539.Google Scholar
- R. LiKamWa, Y. Liu, N. D. Lane, and L. Zhong. 2013. MoodScope: Building a mood sensor from smartphone usage patterns. In Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys’13. Association for Computing Machinery, New York, NY, 389–402. ISBN: 9781450316729. DOI: .Google Scholar
Digital Library
- S. Lin, C. Hsu, W. Talamonti, Y. Zhang, S. Oney, J. Mars, and L. Tang. 2018. Adasa: A conversational in-vehicle digital assistant for advanced driver assistance features. In P. Baudisch, A. Schmidt, and A. Wilson (Eds.), The 31st Annual ACM Symposium on User Interface Software and Technology, UIST 2018. Berlin, Germany, October 14–17, 2018, 531–542. DOI: .Google Scholar
Digital Library
- Y. Lindell. 2005. Secure multiparty computation for privacy preserving data mining. In Encyclopedia of Data Warehousing and Mining. IGI Global, 1005–1009. DOI: .Google Scholar
Cross Ref
- T. Lindenthal. 2017. Beauty in the eye of the home-owner: Aesthetic zoning and residential property values. Real Estate Econ. 48, 530–555. https://onlinelibrary.wiley.com/doi/full/10.1111/1540-6229.12204. DOI: .Google Scholar
Cross Ref
- K. A. Lindquist. 2013. Emotions emerge from more basic psychological ingredients: A modern psychological constructionist model. Emot. Rev. 5, 4, 356–368. DOI: .Google Scholar
Cross Ref
- K. A. Lindquist, J. K. MacCormack, and H. Shablack. 2015. The role of language in emotion: Predictions from psychological constructionism. Front. Psychol. 6, 444. DOI: .Google Scholar
Cross Ref
- Z. C. Lipton. 2018. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue 16, 3, 31–57. DOI: .Google Scholar
Digital Library
- G. Littlewort, M. S. Bartlett, I. Fasel, J. Susskind, and J. Movellan. 2004. Dynamics of facial expression extracted automatically from video. In 2004 Conference on Computer Vision and Pattern Recognition Workshop. IEEE, 80–80. DOI: .Google Scholar
Digital Library
- L. Liu, E. A. Silva, C. Wu, and H. Wang. September. 2017. A machine learning-based method for the large-scale evaluation of the qualities of the urban environment. Comput. Environ. Urban Syst. 65, 113–125. ISSN: 0198-9715. http://www.sciencedirect.com/science/article/pii/S0198971516301831. DOI: .Google Scholar
Cross Ref
- M. Liu, R. Wang, S. Li, S. Shan, Z. Huang, and X. Chen. November. 2014a. Combining multiple kernel methods on Riemannian manifold for emotion recognition in the wild. In Proceedings of the 16th International Conference on Multimodal Interaction. ACM, New York, NY, 494–501. ISBN: 9781450328852. https://dl.acm.org/doi/10.1145/2663204.2666274. DOI: .Google Scholar
Digital Library
- S. Liu, D.-Y. Huang, W. Lin, M. Dong, H. Li, and E. P. Ong. 2014b. Emotional facial expression transfer based on temporal restricted Boltzmann machines. In Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific. IEEE, 1–7. DOI: .Google Scholar
Cross Ref
- S. Liu, D. Zhang, M. Xu, H. Qi, F. He, X. Zhao, P. Zhou, L. Zhang, and D. Ming. 2015. Randomly dividing homologous samples leads to overinflated accuracies for emotion recognition. Int. J. Psychophysiol. 96, 1, 29–37. DOI: .Google Scholar
Cross Ref
- W. Liu, W.-L. Zheng, and B.-L. Lu. 2016. Multimodal emotion recognition using multimodal deep learning. arXiv preprint arXiv:1602.08225. https://arxiv.org/abs/1602.08225.Google Scholar
- T. Liu, P. P. Liang, M. Muszynski, R. Ishii, D. Brent, R. Auerbach, N. Allen, and L.-P. Morency. 2020. Multimodal privacy-preserving mood prediction from mobile data: A preliminary study. arXiv preprint arXiv:2012.02359.Google Scholar
- S. R. Livingstone and F. A. Russo. 2018. The Ryerson audio-visual database of emotional speech and song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PLoS One 13, 5, e0196391. DOI: .Google Scholar
Cross Ref
- B. Logan and J. Healey. 2006. Sensors to detect the activities of daily living. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 5362–5365. DOI: .Google Scholar
Cross Ref
- A. Lotz, K. Ihme, A. Charnoz, P. Maroudis, I. Dmitriev, and A. Wendemuth. 2018. Recognizing behavioral factors while driving: A real-world multimodal corpus to monitor the driver’s affective state. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) LREC, Miyazaki, Japan.Google Scholar
- C. Lutz and A. Tamò-Larrieux. 2020. The robot privacy paradox: Understanding how privacy concerns shape intentions to use social robots. Hum. Mach. Commun. J. 1, 1, 87–111. DOI: .Google Scholar
Cross Ref
- M. L. Lyon. 1995. Missing emotion: The limitations of cultural constructionism in the study of emotion. Cult. Anthropol. 10, 2, 244–263. DOI: .Google Scholar
Cross Ref
- M. J. Lyons, J. Budynek, and S. Akamatsu. 1999. Automatic classification of single facial images. IEEE Trans. Pattern Anal. Mach. Intell. 21, 12, 1357–1362. DOI: .Google Scholar
Digital Library
- M. A. Madaio, R. Lasko, J. Cassell, and A. Ogan. 2017. Using temporal association rule mining to predict dyadic rapport in peer tutoring. In Proceedings of the 10th International Conference on Educational Data Mining.Google Scholar
- K. Makantasis, A. Liapis, and G. N. Yannakakis. 2021. The pixels and sounds of emotion: General-purpose representations of arousal in games. IEEE Transactions on Affective Computing. DOI: .Google Scholar
Digital Library
- M. Malik, A. J. Camm, J. T. Bigger, G. Breithardt, S. Cerutti, R. J. Cohen, P. Coumel, E. L. Fallen, H. L. Kennedy, R. E. Kleiger, F. Lombardi, A. Malliani, A. J. Moss, J. N. Rottman, G. Schmidt, P. J. Schwartz, and D. H. Singer. 1996. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 3, 354–381. ISSN: 0195668X.Google Scholar
Cross Ref
- M. Mansoorizadeh and N. M. Charkari. 2010. Multimodal information fusion application to human emotion recognition from face and speech. Multimed. Tools Appl. 49, 2, 277–297. DOI: .Google Scholar
Digital Library
- V. Marda and S. Ahmed. 2021. Emotional entanglement: China’s emotion recognition market and its implications for human rights. Retrieved March 07, 2021, from https://www.article19.org/wp-content/uploads/2021/01/ER-Tech-China-Report.pdf.Google Scholar
- J. Marín-Morales, J. L. Higuera-Trujillo, A. Greco, J. Guixeres, C. Llinares, E. P. Scilingo, M. Alcañiz, and G. Valenza. December. 2018. Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors. Sci. Rep. 8, 1, 13657. ISSN: 2045-2322. http://www.nature.com/articles/s41598-018-32063-4. DOI: .Google Scholar
Cross Ref
- J. Marín-Morales, C. Llinares, J. Guixeres, and M. Alcañiz. 2020. Emotion recognition in immersive virtual reality: From statistics to affective computing. Sensors 20, 18, 1–26. DOI: .Google Scholar
Cross Ref
- R. P. Marinier and J. E. Laird. 2008. Emotion-driven reinforcement learning. Proc. Annu. Meet. Cogn. Sci. Soc. 30, 115–120.Google Scholar
- R. P. Marinier, J. E. Laird, and R. L. Lewis. 2009. A computational unification of cognitive behavior and emotion. Cogn. Syst. Res. 10, 1, 48–69. ISSN: 1389-0417. https://www.sciencedirect.com/science/article/pii/S1389041708000302. Google Scholar
Digital Library
- S. Marsella and J. Gratch. 2002. A step toward irrationality: Using emotion to change belief. In Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1. 334–341. DOI: .Google Scholar
Digital Library
- S. C. Marsella and J. Gratch. 2009. EMA: A process model of appraisal dynamics. Cogn. Syst. Res. 10, 1, 70–90. DOI: .Google Scholar
Digital Library
- S. Marsella, J. Gratch, and P. Petta. 2010. Computational models of emotion. In A Blueprint for Affective Computing—A Sourcebook and Manual. Oxford University Press, 21–46.Google Scholar
- H. P. Martinez, Y. Bengio, and G. N. Yannakakis. 2013. Learning deep physiological models of affect. IEEE Comput. Intell. Mag. 8, 2, 20–33. DOI: .Google Scholar
Digital Library
- K. Mase. 1991. Recognition of facial expression from optical flow. IEICE Trans. Inf. Syst. 74, 10, 3474–3483. https://search.ieice.org/bin/summary.php?id=e74-d_10_3474.Google Scholar
- I. B. Mauss and M. D. Robinson. 2009. Measures of emotion: A review. Cogn. Emot. 23, 2, 209–237. DOI: .Google Scholar
Cross Ref
- S. E. Maxwell, M. Y. Lau, and G. S. Howard. 2015. Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? Am. Psychol. 70, 6, 487–498. DOI: .Google Scholar
Cross Ref
- R. R. McCrae and O. P. John. 1992. An introduction to the five-factor model and its applications. J. Pers. 60, 2, 175–215. DOI: .Google Scholar
Cross Ref
- J. H. McDonald. 2009. Handbook of Biological Statistics. Vol. 2. Sparky House Publishing, Baltimore, MD.Google Scholar
- D. McDuff, K. Rowan, P. Choudhury, J. Wolk, T. Pham, and M. Czerwinski. 2019. A multimodal emotion sensing platform for building emotion-aware applications. ArXiv, abs/1903.12133.Google Scholar
- D. M. McNair, M. Lorr, and L. F. Droppleman. 1971. EdITS Manual for the Profile of Mood States (POMS). Educational and industrial testing service.Google Scholar
- N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. 2019. A survey on bias and fairness in machine learning. arXiv preprint arXiv:1908.09635.Google Scholar
- G. Meinlschmidt, J.-H. Lee, E. Stalujanis, A. Belardi, M. Oh, E. K. Jung, H.-C. Kim, J. Alfano, S.-S. Yoo, and M. Tegethoff. 2016. Smartphone-based psychotherapeutic micro-interventions to improve mood in a real-world setting. Front. Psychol. 7, 1112. ISSN: 1664-1078. https://www.frontiersin.org/article/10.3389/fpsyg.2016.01112. DOI: .Google Scholar
Cross Ref
- E. L. Melanson and P. S. Freedson. 2001. The effect of endurance training on resting heart rate variability in sedentary adult males. Eur. J. Appl. Physiol. 85, 5, 442–449. DOI: .Google Scholar
Cross Ref
- R. Mendes and J. P. Vilela. 2017. Privacy-preserving data mining: Methods, metrics, and applications. IEEE Access 5, 10562–10582. DOI: .Google Scholar
Cross Ref
- J. Meyerowitz and R. Roy Choudhury. 2009. Hiding stars with fireworks: Location privacy through camouflage. In Proceedings of the 15th Annual International Conference on Mobile Computing and Networking. 345–356. DOI: .Google Scholar
Digital Library
- K. Mikolajczyk and C. Schmid. 2005. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 10, 1615–1630. ISSN: 01628828. DOI: .Google Scholar
Digital Library
- T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.Google Scholar
- T. Miller. 2019. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 267, 1–38. DOI: .Google Scholar
Cross Ref
- G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller. 1990. Introduction to WordNet: An on-line lexical database. Int. J. Lexicogr. 3, 4, 235–244. DOI: .Google Scholar
Cross Ref
- W. Min, S. Mei, L. Liu, Y. Wang, and S. Jiang. 2019. Multi-task deep relative attribute learning for visual urban perception. IEEE Trans. Image Process. 29, 657–669. DOI: .Google Scholar
Digital Library
- A. Miner, A. Chow, S. Adler, I. Zaitsev, P. Tero, A. Darcy, and A. Paepcke. 2016. Conversational agents and mental health: Theory-informed assessment of language and affect. In HAI 2016 Proceedings of the Fourth International Conference on Human Agent Interaction. 123–130. DOI: .Google Scholar
Digital Library
- M. L. Minsky. 1988. The Society of Mind. Simon & Schuster. Google Scholar
Digital Library
- D. Mobbs, C. C. Hagan, T. Dalgleish, B. Silston, and C. Prévost. 2015. The ecology of human fear: Survival optimization and the nervous system. Front. Neurosci. 9, 55. DOI: .Google Scholar
Cross Ref
- T. M. Moerland, J. Broekens, and C. M. Jonker. February. 2018. Emotion in reinforcement learning agents and robots: A survey. Mach. Learn. 107, 2, 443–480. ISSN: 0885-6125. DOI: .Google Scholar
Digital Library
- S. M. Mohammad and S. Kiritchenko. 2013. Using hashtags to capture fine emotion categories from tweets. Comput. Intell. 31, 2. DOI: .Google Scholar
Digital Library
- D. C. Mohr, M. Zhang, and S. M. Schueller. 2017. Personal sensing: Understanding mental health using ubiquitous sensors and machine learning. Annu. Rev. Clin. Psychol. 13, 23–27. DOI: .Google Scholar
Cross Ref
- N. Moraveji, O. Ben, T. Nguyen, M. Saadat, Y. Khalighi, R. Pea, and J. Heer. 2011. Peripheral paced respiration: Influencing user physiology during information work. In UIST’11—Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology. ISBN: 9781450307161. DOI: .Google Scholar
Digital Library
- C. L. Morgan. 1903. Instinct and intelligence. In An Introduction to Comparative Psychology. Walter Scott Publishing, London, 197–216.Google Scholar
- C. J. Morgan. 2017. Use of proper statistical techniques for research studies with small samples. Am. J. Physiol. Lung Cell. Mol. Physiol. 313, 5, L873–L877. DOI: .Google Scholar
Cross Ref
- M. Morris and A. Aguilera. 2012. Mobile, social, and wearable computing and the evolution of psychological practice. Prof. Psychol. Res. Pract. 43, 6, 622–626. DOI: .Google Scholar
Cross Ref
- M. E. Morris, Q. Kathawala, T. K. Leen, E. E. Gorenstein, F. Guilak, M. Labhard, and W. Deleeuw. 2010. Mobile therapy: Case study evaluations of a cell phone application for emotional self-awareness. J. Med. Internet Res. 12, e10. DOI: .Google Scholar
Cross Ref
- S. T. Moturu, I. Khayal, N. Aharony, W. Pan, and A. Pentland. 2011. Using social sensing to understand the links between sleep, mood, and sociability. In 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing. 208–214. DOI: .Google Scholar
Cross Ref
- L. Mou, Z. Meng, R. Yan, G. Li, Y. Xu, L. Zhang, and Z. Jin. 2016. How transferable are neural networks in NLP applications? arXiv preprint arXiv:1603.06111.Google Scholar
- A. J. Moye and M. K. Van Vugt. 2019. A computational model of focused attention meditation and its transfer to a sustained attention task. IEEE Trans. Affect. Comput. 12, 329–339. DOI: .Google Scholar
Digital Library
- C. Mumenthaler, D. Sander, and A. S. Manstead. 2018. Emotion recognition in simulated social interactions. IEEE Trans. Affect. Comput. 11, 2, 308–312. DOI: .Google Scholar
Cross Ref
- M. Muszynski, T. Kostoulas, P. Lombardo, T. Pun, and G. Chanel. 2018. Aesthetic highlight detection in movies based on synchronization of spectators’ reactions. ACM Trans. Multimedia Comput. Commun. Appl. 14, 3, 68. DOI: .Google Scholar
Digital Library
- M. Muszynski, L. Tian, C. Lai, J. Moore, T. Kostoulas, P. Lombardo, T. Pun, and G. Chanel. 2019. Recognizing induced emotions of movie audiences from multimodal information. IEEE Trans. Affect. Comput. 12, 1, 36–52. DOI: .Google Scholar
Digital Library
- N. Napi, A. Zaidan, B. Zaidan, O. Albahri, M. Alsalem, and A. Albahri. 2019. Medical emergency triage and patient prioritisation in a telemedicine environment: A systematic review. Health Technol. 9, 5, 679–700. DOI: .Google Scholar
Cross Ref
- S. Narayanan and P. G. Georgiou. 2013. Behavioral signal processing: Deriving human behavioral informatics from speech and language. Proc. IEEE Inst. Electr. Electron Eng. 101, 5, 1203–1233. DOI: .Google Scholar
Cross Ref
- V. Narayanan, B. M. Manoghar, and A. Bera. 2020. EWareNet: Emotion aware human intent prediction and adaptive spatial profile fusion for social robot navigation. arXiv preprint arXiv:2011.09438.Google Scholar
- F. Nasoz, K. Alvarez, C. L. Lisetti, and N. Finkelstein. 2004. Emotion recognition from physiological signals using wireless sensors for presence technologies. Cogn. Technol. Work 6, 1, 4–14. DOI: .Google Scholar
Digital Library
- A. V. Nefian, L. Liang, X. Pi, X. Liu, and K. Murphy. 2002. Dynamic Bayesian networks for audio-visual speech recognition. EURASIP J. Adv. Signal Process. 2002, 11, 783042. DOI: .Google Scholar
Digital Library
- A. Y. Ng and S. J. Russell. 2000. Algorithms for inverse reinforcement learning. In ICML 1, 663–670. Google Scholar
Digital Library
- K. Nickel, T. Gehrig, R. Stiefelhagen, and J. McDonough. 2005. A joint particle filter for audio-visual speaker tracking. In Proceedings of the 7th International Conference on Multimodal Interfaces. ACM, 61–68. DOI: .Google Scholar
Digital Library
- M. A. Nicolaou, H. Gunes, and M. Pantic. 2010. Audio-visual classification and fusion of spontaneous affective data in likelihood space. In Proceedings—International Conference on Pattern Recognition. 3695–3699. ISBN 9780769541099. DOI: .Google Scholar
Digital Library
- P. M. Niedenthal and F. Ric. 2017. Psychology of Emotion. Psychology Press. DOI: .Google Scholar
Cross Ref
- P. M. Niedenthal, M. Rychlowska, A. Wood, and F. Zhao. 2018. Heterogeneity of long-history migration predicts smiling, laughter and positive emotion across the globe and within the United States. PLoS One 13, 8, e0197651. DOI: .Google Scholar
Cross Ref
- R. Nielek, M. Ciastek, and W. Kopeć. August. 2017. Emotions make cities live: Towards mapping emotions of older adults on urban space. In Proceedings of the International Conference on Web Intelligence, WI’17. Association for Computing Machinery, Leipzig, Germany, 1076–1079. ISBN 978-1-4503-4951-2. DOI: .Google Scholar
Digital Library
- P. A. Nogueira, R. Rodrigues, E. Oliveira, and L. E. Nacke. 2015. Modelling human emotion in interactive environments: Physiological ensemble and grounded approaches for synthetic agents. In Web Intelligence, Vol. 13. IOS Press, 195–214. DOI: .Google Scholar
Cross Ref
- D. A. Norman and S. W. Draper. 1986. User Centered System Design: New Perspectives on Human–Computer Interaction. CRC Press. DOI: .Google Scholar
Digital Library
- F. Noroozi, D. Kaminska, C. Corneanu, T. Sapinski, S. Escalera, and G. Anbarjafari. 2018. Survey on emotional body gesture recognition. IEEE Trans. Affect. Comput. 12, 505–523. DOI: .Google Scholar
Digital Library
- E. Nosakhare and R. Picard. March. 2020. Toward assessing and recommending combinations of behaviors for improving health and well-being. ACM Trans. Comput. Healthc. 1, 1, 1–29. ISSN: 2691-1957. DOI: .Google Scholar
Digital Library
- M. Nussbaum and A. Sen. 1993. The Quality of Life. Clarendon Press.Google Scholar
- K. Oatley and P. N. Johnson-Laird. 1987. Towards a cognitive theory of emotions. Cogn. Emot. 1, 1, 29–50. DOI: .Google Scholar
Cross Ref
- M. Ochs, R. Niewiadomski, and C. Pelachaud. 2015. 18 Facial expressions of emotions for virtual characters. In The Oxford Handbook of Affective Computing. Oxford University Press, 261–272.Google Scholar
- A. Ogarkova. 2016. Translatability of emotions. In Emotion Measurement. Elsevier, 575–599. DOI: .Google Scholar
Cross Ref
- S. R. Oliveira and O. R. Zaiane. 2002. Privacy preserving frequent itemset mining. In Proceedings of the IEEE International Conference on Privacy, Security and Data Mining. Vol. 14, 43–54. DOI: .Google Scholar
Digital Library
- S. R. Oliveira and O. R. Zaiane. 2010. Privacy preserving clustering by data transformation. J. Inf. Data Manag. 1, 1, 37–51. https://periodicos.ufmg.br/index.php/jidm/article/view/32.Google Scholar
- S. Ollander, C. Godin, A. Campagne, and S. Charbonnier. October. 2016. A comparison of wearable and stationary sensors for stress detection. In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 004362–004366. DOI: .Google Scholar
Digital Library
- A. Ortony and G. Clore. 2015. Can an appraisal model be compatible with psychological constructionism. In The Psychological Construction of Emotion. Guilford, New York, NY, 305–333.Google Scholar
- A. Ortony and T. J. Turner. 1990. What’s basic about basic emotions? Psychol. Rev. 97, 3, 315–331. DOI: .Google Scholar
Cross Ref
- A. Ortony, G. L. Clore, and A. Collins. 1990. The Cognitive Structure of Emotions. Cambridge University Press. DOI: .Google Scholar
Cross Ref
- A. J. O’Toole, J. Harms, S. L. Snow, D. R. Hurst, M. R. Pappas, J. H. Ayyad, and H. Abdi. 2005. A video database of moving faces and people. IEEE Trans. Pattern Anal. Mach. Intell. 27, 5, 812–816. DOI: .Google Scholar
Digital Library
- S. Oviatt. 2013. The Design of Future Educational Interfaces. Routledge. DOI: .Google Scholar
Cross Ref
- S. Oviatt, B. Schuller, P. Cohen, D. Sonntag, G. Potamianos, and A. Krüger. 2018. The Handbook of Multimodal-Multisensor Interfaces, Volume 2: Signal Processing, Architectures, and Detection of Emotion and Cognition. Morgan & Claypool. DOI: .Google Scholar
Digital Library
- A. Paiva. 2000. Affective interactions: Toward a new generation of computer interfaces? In A. Paiva (Ed.), International Workshop on Affective Interactions. Springer, Berlin, 1–8. .Google Scholar
Digital Library
- X. Pan and A. F. de C. Hamilton. 2018. Why and how to use virtual reality to study human social interaction: The challenges of exploring a new research landscape. Br. J. Psychol. 109, 3, 395–417. DOI: .Google Scholar
Cross Ref
- S. J. Pan and Q. Yang. 2009. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 10, 1345–1359. DOI: .Google Scholar
Digital Library
- B. Pang and L. Lee. 2008. Opinion mining and sentiment analysis. Found. Trends Inf. Ret. 2, 1–2, 1–135. DOI: .Google Scholar
Digital Library
- J. Panksepp and D. Watt. 2011. What is basic about basic emotions? Lasting lessons from affective neuroscience. Emot. Rev. 3, 4, 387–396. DOI: .Google Scholar
Cross Ref
- M. Pantic and L. Ü. M. Rothkrantz. 2000. Automatic analysis of facial expressions: The state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1424–1445. ISSN: 01628828. DOI: .Google Scholar
Digital Library
- M. Pantic, I. Patras, and L. Rothkruntz. 2002. Facial action recognition in face profile image sequences. In Proceedings—2002 IEEE International Conference on Multimedia and Expo, ICME 2002. ISBN: 0780373049. DOI: .Google Scholar
Cross Ref
- M. Pantic, N. Sebe, J. F. Cohn, and T. Huang. 2005a. Affective multimodal human–computer interaction. In Proceedings of the 13th Annual ACM International Conference on Multimedia. ACM, 669–676. DOI: .Google Scholar
Digital Library
- M. Pantic, M. Valstar, R. Rademaker, and L. Maat. 2005b. Web-based database for facial expression analysis. In Proceedings International Conference on Multimedia and Expo. IEEE. DOI: .Google Scholar
Cross Ref
- P. Paredes, R. Giald-Bachrach, M. Czerwinski, A. Roseway, K. Rowan, and J. Hernandez. 2014. PopTherapy: Coping with stress through pop-culture. In PervasiveHealth ’14: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare. DOI: .Google Scholar
Digital Library
- G. I. Parisi, J. Tani, C. Weber, and S. Wermter. 2017. Lifelong learning of human actions with deep neural network self-organization. Neural Netw. 96, 137–149. DOI: .Google Scholar
Cross Ref
- G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. 2019. Continual lifelong learning with neural networks: A review. Neural Netw. 113, 54–71. DOI: .Google Scholar
Digital Library
- H. W. Park, I. Grover, S. Spaulding, L. Gomez, and C. Breazeal. 2019. Multimodal coordination of facial action, head rotation, and eye motion during spontaneous smiles. In Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings. DOI: .Google Scholar
Digital Library
- J. R. Parks and J. L. Schofer. July. 2006. Characterizing neighborhood pedestrian environments with secondary data. Transp. Res. D Transp. Environ. 11, 4, 250–263. ISSN: 1361-9209. http://www.sciencedirect.com/science/article/pii/S1361920906000277. DOI: .Google Scholar
Cross Ref
- D. L. Paulhus and K. M. Williams. 2002. The dark triad of personality: Narcissism, Machiavellianism, and psychopathy. J. Res. Pers. 36, 556–563. DOI: .Google Scholar
Cross Ref
- A. Pavlenko. 2014. The Bilingual Mind: And What It Tells Us about Language and Thought. Cambridge University Press. DOI: .Google Scholar
Cross Ref
- I. P. Pavlov. 1927. Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Nature 121, 3052, 662–664.Google Scholar
- H. Peng, F. Long, and C. Ding. August. 2005. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 8, 1226–1238. ISSN: 01628828. DOI: .Google Scholar
Digital Library
- J. W. Pennebaker, M. E. Francis, and R. J. Booth. 2001. Linguistic Inquiry and Word Count: LIWC 2001. Lawrence Erlbaum Associates, Mahway, NJ, 71, 2001, 2001.Google Scholar
- A. Pentland, D. Lazer, D. Brewer, and T. Heibeck. 2009. Using reality mining to improve public health and medicine. Stud. Health Technol. Inform. 149, 93–102.Google Scholar
- V. Perez Rosas, R. Mihalcea, and L. P. Morency. 2013. Multimodal sentiment analysis of Spanish online videos. IEEE Intell. Syst. 28, 38–45. ISSN: 15411672. DOI: .Google Scholar
Digital Library
- L. Pessoa. 2018. Emotion and the interactive brain: Insights from comparative neuroanatomy and complex systems. Emot. Rev. 10, 3, 204–216. DOI: .Google Scholar
Cross Ref
- S. Petridis and M. Pantic. 2008. Audiovisual discrimination between laughter and speech. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 5117–5120. DOI: .Google Scholar
Cross Ref
- P. Petta, C. Pelachaud, and R. Cowie. 2011. Emotion-Oriented Systems: The Humaine Handbook. Springer. DOI: .Google Scholar
Digital Library
- A. J. Phillips, W. M. Clerx, C. S. O’Brien, A. Sano, L. K. Barger, R. W. Picard, S. W. Lockley, E. B. Klerman, and C. A. Czeisler. 2017. Irregular sleep/wake patterns are associated with poorer academic performance and delayed circadian and sleep/wake timing. Sci. Rep. ISSN: 20452322. DOI: .Google Scholar
Cross Ref
- S. Piana, A. Staglianò, A. Camurri, and F. Odone. 2013. A set of full-body movement features for emotion recognition to help children affected by autism spectrum condition. In IDGEI International Workshop. http://fdg2013.org/program/workshops/papers/IDGEI2013/idgei2013_4.pdfGoogle Scholar
- S. Piana, A. Stagliano, F. Odone, A. Verri, and A. Camurri. 2014. Real-time automatic emotion recognition from body gestures. arXiv preprint arXiv:1402.5047.Google Scholar
- R. W. Picard. 1995. Affective Computing. MIT Media Laboratory Perceptual Computing Section Technical Report No. 321. Cambridge, MA, 2139.Google Scholar
- R. W. Picard. 1997. Affective Computing. MIT Press. Google Scholar
Cross Ref
- R. W. Picard. 2000. Affective Computing. MIT Press. Google Scholar
Cross Ref
- R. W. Picard. 2011. Measuring affect in the wild. In International Conference on Affective Computing and Intelligent Interaction. Springer, 3–3. Google Scholar
Digital Library
- R. W. Picard and J. Healey. 1997a. Affective wearables. In Proceedings of the 1st IEEE International Symposium on Wearable Computers, ISWC’97. IEEE Computer Society, 90–97. ISBN: 0818681926. DOI: .Google Scholar
Digital Library
- R. W. Picard and J. Healey. 1997b. Affective wearables. Pers. Technol. 1, 4, 231–240.Google Scholar
Cross Ref
- R. W. Picard, E. Vyzas, and J. Healey. 2001. Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23, 10, 1175–1191. DOI: .Google Scholar
Digital Library
- A. Pika, M. T. Wynn, S. Budiono, A. H. M. ter Hofstede, W. M. P. van der Aalst, and H. A. Reijers. 2019. Towards privacy-preserving process mining in healthcare. In International Conference on Business Process Management. Springer, 483–495.Google Scholar
- V. Pitsikalis, A. Katsamanis, G. Papandreou, and P. Maragos. 2006. Adaptive multimodal fusion by uncertainty compensation. In INTERSPEECH 2006 and 9th International Conference on Spoken Language Processing, INTERSPEECH 2006—ICSLP. ISBN 9781604234497.Google Scholar
- R. Plutchik. 1984. Emotions: A general psychoevolutionary theory. In Approaches to Emotion, chapter 8. Psychology Press, 197–219.Google Scholar
- S. Poria, E. Cambria, and A. Gelbukh. 2015. Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2539–2544. DOI: .Google Scholar
Cross Ref
- S. Poria, I. Chaturvedi, E. Cambria, and A. Hussain. 2016. Convolutional MKL based multimodal emotion recognition and sentiment analysis. In 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 439–448. DOI: .Google Scholar
Cross Ref
- S. Poria, E. Cambria, R. Bajpai, and A. Hussain. September. 2017. A review of affective computing: From unimodal analysis to multimodal fusion. Inf. Fusion 37, 98–125. ISSN: 1566-2535. http://www.sciencedirect.com/science/article/pii/S1566253517300738. DOI: .Google Scholar
Digital Library
- S. Poria, N. Majumder, R. Mihalcea, and E. Hovy. 2019. Emotion recognition in conversation: Research challenges, datasets, and recent advances. IEEE Access 7, 100943–100953. DOI: .Google Scholar
Cross Ref
- S. Poria, D. Hazarika, N. Majumder, and R. Mihalcea. 2020. Beneath the tip of the iceberg: Current challenges and new directions in sentiment analysis research. IEEE Trans. Affect. Comput. DOI: .Google Scholar
Digital Library
- J. Posner, J. A. Russell, and B. S. Peterson. 2005. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17, 3, 715–734. DOI: .Google Scholar
Cross Ref
- D. Premack and G. Woodruff. 1978. Does the chimpanzee have a theory of mind? Behav. Brain Sci. 1, 4, 515–526. DOI: .Google Scholar
Cross Ref
- S. D. Preston and F. B. M. de Waal. 2002. Empathy: Its ultimate and proximate bases. Behav. Brain Sci. 25, 1 , 1–20. DOI: .Google Scholar
Cross Ref
- J. Qin, X. Zhou, C. Sun, H. Leng, and Z. Lian. 2013. Influence of green spaces on environmental satisfaction and physiological status of urban residents. Urban For. Urban Green. 12, 4, 490–497. DOI: .Google Scholar
Cross Ref
- D. Quercia, N. K. O’Hare, and H. Cramer. 2014. Aesthetic capital: What makes London look beautiful, quiet, and happy? In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing—CSCW’14. ACM Press, Baltimore, MD, 945–955. ISBN 978-1-4503-2540-0. http://dl.acm.org/citation.cfm?doid=2531602.2531613. DOI: .Google Scholar
Digital Library
- M. Rabbi, A. Pfammatter, M. Zhang, B. Spring, and T. Choudhury. 2015a. Automated personalized feedback for physical activity and dietary behavior change with mobile phones: A randomized controlled trial on adults. JMIR Mhealth Uhealth 3, 2, e42. DOI: .Google Scholar
Cross Ref
- M. Rabbi, M. H. Aung, M. Zhang, and T. Choudhury. 2015b. MyBehavior: Automatic personalized health feedback from user behaviors and preferences using smartphones. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing. 707–718. DOI: .Google Scholar
Digital Library
- M. Raghavan, S. Barocas, J. Kleinberg, and K. Levy. 2020. Mitigating bias in algorithmic hiring: Evaluating claims and practices. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. 469–481. .Google Scholar
Digital Library
- N. Rajcic and J. McCormack. 2020. Mirror ritual: An affective interface for emotional self-reflection. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 1–13. DOI: .Google Scholar
Digital Library
- D. Ramachandran and E. Amir. 2007. Bayesian inverse reinforcement learning. In IJCAI, Vol. 7, 2586–2591. https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-416.pdf. Google Scholar
Digital Library
- M. A. Rana, M. Mukadam, S. R. Ahmadzadeh, S. Chernova, and B. Boots. 13–15 Nov 2017. Towards robust skill generalization: Unifying learning from demonstration and motion planning. In S. Levine, V. Vanhoucke, and K. Goldberg (Eds.), Proceedings of the 1st Annual Conference on Robot Learning, Vol. 78 of Proceedings of Machine Learning Research. PMLR. 109–118. https://proceedings.mlr.press/v78/rana17a.html.Google Scholar
- P. Rani, C. Liu, N. Sarkar, and E. Vanman. 2006. An empirical study of machine learning techniques for affect recognition in human–robot interaction. Pattern Anal. Appl. 9, 1, 58–69. DOI: .Google Scholar
Digital Library
- R. Rao and R. Derakhshani. 2005. A comparison of EEG preprocessing methods using time delay neural networks. In Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering. IEEE, 2005, 262–264. DOI: .Google Scholar
Cross Ref
- M. Redi, L. M. Aiello, R. Schifanella, and D. Quercia. November. 2018. The spirit of the city: Using social media to capture neighborhood ambiance. Proc. ACM Hum. Comput. Interact. 2, 144, 1–18. DOI: .Google Scholar
Digital Library
- Research and Markets. 2021. Affective Computing Market—Growth, Trends, COVID-19 Impact, and Forecasts (2021–2026). Retrieved March 23, 2021, from https://www.researchandmarkets.com/reports/4602229/affective-computing-market-growth-trends#rela3-4396321.Google Scholar
- I. M. Rezazadeh, M. Firoozabadi, H. Hu, and S. M. R. H. Golpayegani. 2012. Co-adaptive and affective human–machine interface for improving training performances of virtual myoelectric forearm prosthesis. IEEE Trans. Affect. Comput. 3, 3, 285–297. DOI: .Google Scholar
Digital Library
- L. Rhue. 2018. Racial influence on automated perceptions of emotions. Available at SSRN 3281765.Google Scholar
- T. Ribeiro and A. Paiva. 2012. The illusion of robotic life: Principles and practices of animation for robots. In Proceedings of the Seventh Annual ACM/IEEE International Conference on Human–Robot Interaction. 383–390. DOI: .Google Scholar
Digital Library
- M. T. Ribeiro, S. Singh, and C. Guestrin. 2016. “Why should I trust you?”: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, August 13–17, 2016, 1135–1144. DOI: .Google Scholar
Digital Library
- S. Richardson. 2020. Affective computing in the modern workplace. Bus. Inf. Rev. 37, 2, 78–85. DOI: .Google Scholar
Cross Ref
- L. D. Riek. 2012. Wizard of Oz studies in HRI: A systematic review and new reporting guidelines. J. Hum. Robot Interact. 1, 1, 119–136. DOI: .Google Scholar
Digital Library
- M. B. Ring. 1994. Continual Learning in Reinforcement Environments. Ph.D. thesis. University of Texas at Austin, Austin, TX. 78712. Google Scholar
Digital Library
- L. Ring, T. Bickmore, and P. Pedrelli. 2016. An affectively aware virtual therapist for depression counseling. In Proceedings of the CHI 2016 Workshop on Computing and Mental Health. http://relationalagents.com/publications/CHI2016-MentalHealth.pdf.Google Scholar
- F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne. 2013. Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions. In 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG). 1–8. DOI: .Google Scholar
Cross Ref
- F. Ringeval, B. Schuller, M. Valstar, N. Cummins, R. Cowie, L. Tavabi, M. Schmitt, S. Alisamir, S. Amiriparian, E.-M. Messner, S. Song, S. Liu, Z. Zhao, A. Mallol-Ragolta, Z. Ren, M. Soleymani, and M. Pantic. 2019. AVEC 2019 workshop and challenge: State-of-mind, detecting depression with AI, and cross-cultural affect recognition. In Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop. 3–12. DOI: .Google Scholar
Digital Library
- G. Riva and M. Mauri. 2021. MuMMER: How robotics can reboot social interaction and customer engagement in shops and malls. Cyberpsychol. Behav. Soc. Netw. 24, 3, 210–211. DOI: .Google Scholar
Cross Ref
- G. Riva, F. Mantovani, C. S. Capideville, A. Preziosa, F. Morganti, D. Villani, A. Gaggioli, C. Botella, and M. Alcañiz. February. 2007. Affective interactions using virtual reality: The link between presence and emotions. Cyberpsychol. Behav. 10, 1, 45–56. ISSN: 1094-9313. http://www.liebertpub.com/doi/10.1089/cpb.2006.9993. DOI: .Google Scholar
Cross Ref
- G. Rizos and B. W. Schuller. 2020. Average Jane, where art thou? —Recent avenues in efficient machine learning under subjectivity uncertainty. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer, 42–55. DOI: .Google Scholar
Cross Ref
- P. Robinette, W. Li, R. Allen, A. M. Howard, and A. R. Wagner. 2016. Overtrust of robots in emergency evacuation scenarios. In The Eleventh ACM/IEEE International Conference on Human Robot Interaction. IEEE Press, 101–108. DOI: .Google Scholar
Digital Library
- N. L. Robinson, T. V. Cottier, and D. J. Kavanagh. 2019. Psychosocial health interventions by social robots: Systematic review of randomized controlled trials. J. Med. Internet Res. 21, 5, e13203. DOI: .Google Scholar
Cross Ref
- M. Robnik-Šikonja and M. Bohanec. 2018. Perturbation-based explanations of prediction models. In Human and Machine Learning. Human–Computer Interaction Series, Springer, Cham, 159–175. DOI: .Google Scholar
Cross Ref
- C. Rogers. 1961. On Becoming a Person: A Therapist’s View of Psychotherapy. Houghton Mifflin Company Sentry Edition. Houghton Mifflin. ISBN 9780395084090. https://books.google.com/books?id=oSqjUrKjrKYC.Google Scholar
- J. Rong, Y. P. P. Chen, M. Chowdhury, and G. Li. 2007. Acoustic features extraction for emotion recognition. In Proceedings—6th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2007; 1st IEEE/ACIS International Workshop on e-Activity, IWEA 2007, 419–424. ISBN 0769528414. DOI: .Google Scholar
Cross Ref
- A. M. Rosenthal-von der Pütten, N. C. Krämer, and J. Herrmann. 2018. The effects of human-like and robot-specific affective nonverbal behavior on perception, emotion, and behavior. Int. J. Soc. Robot. 10, 5, 569–582. DOI: .Google Scholar
Cross Ref
- F. D. Rosis, C. Pelachaud, I. Poggi, V. Carofiglio, and B. D. Carolis. 2003. From Greta’s mind to her face: Modelling the dynamics of affective states in a conversational embodied agent. Int. J. Hum.-Comput. Stud. 59, 1, 81–118. DOI: .Google Scholar
Digital Library
- S. Rossi, F. Ferland, and A. Tapus. 2017. User profiling and behavioral adaptation for HRI: A survey. Pattern Recognit. Lett. 99, 3–12. DOI: .Google Scholar
Digital Library
- M. B. Rosson and J. M. Carroll. 2009. Scenario based design. In Human–Computer Interaction. CRC Press, Boca Raton, FL, 145–162.Google Scholar
- J. Rubin, H. Eldardiry, R. Abreu, S. Ahern, H. Du, A. Pattekar, and D. G. Bobrow. 2015. Towards a mobile and wearable system for predicting panic attacks. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 529–533. DOI: .Google Scholar
Digital Library
- W. Ruch. 1995. Will the real relationship between facial expression and affective experience please stand up: The case of exhilaration. Cogn. Emot. 9, 1, 33–58. DOI: .Google Scholar
Cross Ref
- O. Rudovic, M. Pantic, and I. Patras. 2012. Coupled Gaussian processes for pose-invariant facial expression recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 6, 1357–1369. DOI: .Google Scholar
Digital Library
- O. Rudovic, J. Lee, M. Dai, B. Schuller, and R. W. Picard. 2018. Personalized machine learning for robot perception of affect and engagement in autism therapy. Sci. Robot. 3, 19. DOI: .Google Scholar
Cross Ref
- K. Ruhland, C. E. Peters, S. Andrist, J. B. Badler, N. I. Badler, M. Gleicher, B. Mutlu, and R. McDonnell. 2015. A review of eye gaze in virtual agents, social robotics and HCI: Behaviour generation, user interaction and perception. Comput. Graph. Forum 34, 299–326. DOI: .Google Scholar
Digital Library
- P. Ruskamp. 2016. Your Environment and You: Investigating Stress Triggers and Characteristics of the Built Environment. Ph.D. thesis. Kansas State University, Manhattan, KS. https://krex.k-state.edu/dspace/handle/2097/32592.Google Scholar
- J. A. Russell. 1980. A circumplex model of affect. J. Pers. Soc. Psychol. 39, 6, 1161–1178. DOI: .Google Scholar
Cross Ref
- J. A. Russell. 1991. Culture and the categorization of emotions. Psychol. Bull. 110, 3, 426–450. DOI: .Google Scholar
Cross Ref
- S. Russell. 2019. Human Compatible: Artificial Intelligence and the Problem of Control. Penguin.Google Scholar
- J. A. Russell and A. Mehrabian. 1977. Evidence for a three-factor theory of emotions. J. Res. Pers. 11, 3, 273–294. DOI: .Google Scholar
Cross Ref
- J. A. Russell, A. Weiss, and G. A. Mendelsohn. 1989. Affect grid: A single-item scale of pleasure and arousal. J. Pers. Soc. Psychol. 57, 3, 493–502. ISSN: 00223514. DOI: .Google Scholar
Cross Ref
- J. A. Russell, J.-A. Bachorowski, and J.-M. Fernández-Dols. 2003. Facial and vocal expressions of emotion. Annu. Rev. Psychol. 54, 1, 329–349. DOI: .Google Scholar
Cross Ref
- D. Ruta and B. Gabrys. 2000. An overview of classifier fusion methods. Comput. Inf. Syst. 7, 1, 1–10. ISSN: 1352-9404.Google Scholar
- M. D. Rutherford, S. Baron-Cohen, and S. Wheelwright. 2002. Reading the mind in the voice: A study with normal adults and adults with Asperger syndrome and high functioning autism. J. Autism Dev. Disord. 32, 3, 189–194. DOI: .Google Scholar
Cross Ref
- S. Saeb, E. G. Lattie, S. M. Schueller, K. P. Kording, and D. C. Mohr. September. 2016. The relationship between mobile phone location sensor data and depressive symptom severity. PeerJ 4, e2537. ISSN: 2167-8359. https://peerj.com/articles/2537. DOI: .Google Scholar
Cross Ref
- I. Sakellariou, P. Kefalas, S. Savvidou, I. Stamatopoulou, and M. Ntika. 2016. The role of emotions, mood, personality and contagion in multi-agent system decision making. In IFIP International Conference on Artificial Intelligence Applications and Innovations. Springer, 359–370. DOI: .Google Scholar
Cross Ref
- T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. 2017. Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864.Google Scholar
- S. Salmeron-Majadas, O. Santos, and J. Boticario. 2014. Exploring indicators from keyboard and mouse interactions to predict the user affective state. In 7th International Conferenceon Educational Data Mining. 365–366. https://www.educationaldatamining.org/EDM2014/uploads/procs2014/posters/41_EDM-2014-Poster.pdf.Google Scholar
- P. Samarati. 2001. Protecting respondents identities in microdata release. IEEE Trans. Knowl. Data Eng. 13, 6, 1010–1027. DOI: .Google Scholar
Digital Library
- A. Sano and R. W. Picard. 2013. Stress recognition using wearable sensors and mobile phones. In 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. IEEE, Geneva, Switzerland, 671–676. ISBN 978-0-7695-5048-0. DOI: .Google Scholar
Digital Library
- A. Sano, P. Johns, and M. Czerwinski. 2015a. Healthaware: An advice system for stress, sleep, diet and exercise. In 2015 6th International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, ACII. Google Scholar
Digital Library
- A. Sano, A. J. Phillips, A. Z. Yu, A. W. McHill, S. Taylor, N. Jaques, C. A. Czeisler, E. B. Klerman, and R. W. Picard. 2015b. Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones. 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN). 1–6. DOI: .Google Scholar
Cross Ref
- A. Sano, A. Z. Yu, A. W. McHill, A. J. Phillips, S. Taylor, N. Jaques, E. B. Klerman, and R. Picard. 2015c. Prediction of happy–sad mood from daily behaviors and previous sleep history. In In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). DOI: .Google Scholar
Cross Ref
- A. Sano, P. Johns, and M. Czerwinski. 2017a. Designing opportune stress intervention delivery timing using multi-modal data. In 2017 7th International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE. DOI: .Google Scholar
Cross Ref
- A. Sano, A. Phillips, A. McHill, S. Taylor, L. Barger, C. Czeisler, and R. Picard. 2017b. Influence of weekly sleep regularity on self-reported wellbeing. Sleep 40, A67–A68. ISSN: 0161-8105. DOI: .Google Scholar
Cross Ref
- A. Sano, S. Taylor, A. W. McHill, A. J. Phillips, L. K. Barger, E. Klerman, and R. Picard. 2018. Identifying objective physiological markers and modifiable behaviors for self-reported stress and mental health status using wearable sensors and mobile phones: Observational study. J. Med. Internet Res. ISSN: 14388871. DOI: .Google Scholar
Cross Ref
- J. M. Saragih, S. Lucey, and J. F. Cohn. 2011. Deformable model fitting by regularized landmark mean-shift. Int. J. Comput. Vis. 91, 200–215. ISSN: 09205691. DOI: .Google Scholar
Digital Library
- T. R. Sarbin. 2014. Emotions as situated actions. In Emotions in Ideal Human Development. Psychology Press, 89–112.Google Scholar
- C. Sarkar, S. Bhatia, A. Agarwal, and J. Li. 2014. Feature analysis for computational personality recognition using YouTube personality data set. In Proceedings of the 2014 ACM Multi Media on Workshop on Computational Personality Recognition. ACM, 11–14. DOI: .Google Scholar
Digital Library
- D. A. Sauter and A. H. Fischer. April. 2018. Can perceivers recognise emotions from spontaneous expressions? Cogn. Emot. 32, 3, 504–515. ISSN: 0269-9931. https://www.tandfonline.com/doi/full/10.1080/02699931.2017.1320978. DOI: .Google Scholar
Cross Ref
- S. Schachter and J. E. Singer. 1962. Cognitive, social, and physiological determinants of emotional state. Psychol. Rev. 69, 5, 379–399. DOI: .Google Scholar
Cross Ref
- K. R. Scherer. 1986. Vocal affect expression: A review and a model for future research. Psychol. Bull. 99, 2, 143–165. DOI: .Google Scholar
Cross Ref
- K. R. Scherer. 2003. Vocal communication of emotion: A review of research paradigms. Speech Commun. 40, 1–2, 227–256. DOI: .Google Scholar
Digital Library
- K. R. Scherer, T. Bänziger, and E. Roesch. 2010. A Blueprint for Affective Computing: A Sourcebook and Manual. Oxford University Press. Google Scholar
Digital Library
- K. R. Scherer, A. Schorr, and T. Johnstone (Eds.). 2001. Appraisal Processes in Emotion: Theory, Methods, Research. Oxford University Press.Google Scholar
- A. Schirmer and R. Adolphs. 2017. Emotion perception from face, voice, and touch: Comparisons and convergence. Trends Cogn. Sci. 21, 3, 216–228. DOI: .Google Scholar
Cross Ref
- P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, and K. van Laerhoven. 2018. Introducing WESAD, a multimodal dataset for wearable stress and affect detection. In Proceedings of the 20th ACM International Conference on Multimodal Interaction. 400–408. DOI: .Google Scholar
Digital Library
- M. A. Schmuckler. 2001. What is ecological validity? A dimensional analysis. Infancy 2, 4, 419–436. DOI: .Google Scholar
Cross Ref
- A. N. Schore. 2015. Affect Regulation and the Origin of the Self: The Neurobiology of Emotional Development. Routledge.Google Scholar
- D. Schuler and A. Namioka. 1993. Participatory Design: Principles and Practices. CRC Press. Google Scholar
Digital Library
- D. Schuller and B. W. Schuller. 2018. The age of artificial emotional intelligence. Computer. 51, 9, 38–46. DOI: .Google Scholar
Digital Library
- B. Schuller, G. Rigoll, and M. Lang. 2003. Hidden Markov model-based speech emotion recognition. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing—Proceedings. DOI: .Google Scholar
Digital Library
- B. Schuller, A. Batliner, S. Steidl, and D. Seppi. November. 2011. Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge. Speech Commun. 53, 9–10, 1062–1087. ISSN: 01676393. DOI: .Google Scholar
Digital Library
- B. W. Schuller, A. Batliner, C. Bergler, E.-M. Messner, A. Hamilton, S. Amiriparian, A. Baird, G. Rizos, M. Schmitt, L. Stappen, H. Baumeister, A. D. MacIntyre, and S. Hantke. 2020. The INTERSPEECH 2020 Computational Paralinguistics Challenge: Elderly emotion, breathing & masks. Proceedings INTERSPEECH. ISCA, Shanghai, China, 2042–2046. DOI: .Google Scholar
Cross Ref
- N. Sebe, I. Cohen, and T. S. Huang. 2005. Multimodal emotion recognition. In Handbook of Pattern Recognition and Computer Vision. World Scientific. https://www.worldscientific.com/doi/abs/10.1142/9789812775320_0021.Google Scholar
- N. Sebe, I. Cohen, T. Gevers, and T. S. Huang. 2006. Emotion recognition based on joint visual and audio cues. In 18th International Conference on Pattern Recognition (ICPR’06), Vol. 1. IEEE, 1136–1139. DOI: .Google Scholar
Digital Library
- E. Sedenberg, J. Chuang, and D. Mulligan. 2016. Designing commercial therapeutic robots for privacy preserving systems and ethical research practices within the home. Int. J. Soc. Robot. 8, 4, 575–587. DOI: .Google Scholar
Cross Ref
- P. Sequeira, F. S. Melo, and A. Paiva. 2011. Emotion-based intrinsic motivation for reinforcement learning agents. In S. D’Mello, A. Graesser, B. Schuller, and J.-C. Martin (Eds.), Affective Computing and Intelligent Interaction. CII 2011. Lecture Notes in Computer Science, Vol. 6974. Springer, Berlin, 326–336. ISBN: 978-3-642-24600-5. DOI: .Google Scholar
Digital Library
- M. Shah, B. Mears, C. Chakrabarti, and A. Spanias. 2012. Lifelogging: Archival and retrieval of continuously recorded audio using wearable devices. In 2012 IEEE International Conference on Emerging Signal Processing Applications. 99–102. DOI: .Google Scholar
Cross Ref
- G. Sharma and A. Dhall. 2021. A survey on automatic multimodal emotion recognition in the wild. In G. Phillips-Wren, A. Esposito, and L. C. Jain (Eds.), Advances in Data Science: Methodologies and Applications. Intelligent Systems Reference Library, Vol. 189. Springer, Cham, 35–64. DOI: .Google Scholar
Cross Ref
- P. E. Shrout and J. L. Rodgers. 2018. Psychology, science, and knowledge construction: Broadening perspectives from the replication crisis. Annu. Rev. Psychol. 69, 487–510. DOI: .Google Scholar
Cross Ref
- L. Shu, J. Xie, M. Yang, Z. Li, Z. Li, D. Liao, X. Xu, and X. Yang. June. 2018. A review of emotion recognition using physiological signals. Sensors (Basel). 18, 7, 2074. ISSN: 1424-8220. http://www.mdpi.com/1424-8220/18/7/2074. DOI: .Google Scholar
Cross Ref
- S. Siddharth, T.-P. Jung, and T. J. Sejnowski. 2018. Multi-modal approach for affective computing. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 291–294. DOI: .Google Scholar
Cross Ref
- K. D. Sidney, S. D. Craig, B. Gholson, S. Franklin, R. Picard, and A. C. Graesser. 2005. Integrating affect sensors in an intelligent tutoring system. In Affective Interactions: The Computer in the Affective Loop Workshop at 2005. AMC Press, 7–13.Google Scholar
- E. Siedlecka and T. F. Denson. January. 2019. Experimental methods for inducing basic emotions: A qualitative review. Emot. Rev. 11, 1, 87–97. ISSN: 1754-0739. http://journals.sagepub.com/doi/10.1177/1754073917749016. DOI: .Google Scholar
Cross Ref
- E. H. Siegel, M. K. Sands, W. van den Noortgate, P. Condon, Y. Chang, J. Dy, K. S. Quigley, and L. F. Barrett. 2018. Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. Psychol. Bull. 144, 4, 343. DOI: .Google Scholar
Cross Ref
- I. Siegert, R. Böck, and A. Wendemuth. 2014. Inter-rater reliability for emotion annotation in human–computer interaction: Comparison and methodological improvements. J. Multimodal User In. 8, 1, 17–28. ISSN: 17838738. DOI: .Google Scholar
Cross Ref
- K. Sikka, K. Dykstra, S. Sathyanarayana, G. Littlewort, and M. Bartlett. 2013. Multiple kernel learning for emotion recognition in the wild. In ICMI 2013—Proceedings of the 2013 15th ACM International Conference on Multimodal Interaction. 517–524. ISBN: 9781450321297. DOI: .Google Scholar
Digital Library
- H. A. Simon. 1967. Motivational and emotional controls of cognition. Psychol. Rev. 74, 1, 29–39. DOI: .Google Scholar
Cross Ref
- K. Simonyan and A. Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.Google Scholar
- S. Singh, A. G. Barto, and N. Chentanez. 2004. Intrinsically motivated reinforcement learning. In Proceedings of the 17th International Conference on Neural Information Processing Systems, NIPS’04. MIT Press, Cambridge, 1281–1288. Google Scholar
Digital Library
- D. Singh, I. Psychoula, E. Merdivan, J. Kropf, S. Hanke, E. Sandner, L. Chen, and A. Holzinger. 2020. Privacy-enabled smart home framework with voice assistant. In F. Chen, R. García-Betances, L. Chen, M. Cabrera-Umpiérrez, and C. Nugent (Eds.), Smart Assisted Living. Computer Communications and Networks. Springer, Cham, 321–339. DOI: .Google Scholar
Cross Ref
- V. Sivaraman, H. H. Gharakheili, A. Vishwanath, R. Boreli, and O. Mehani. 2015. Network-level security and privacy control for smart-home IoT devices. In 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE, 163–167. DOI: .Google Scholar
Cross Ref
- B. F. Skinner. 1938. The Behaviour of Organisms: An Experimental Analysis. Appleton-Century.Google Scholar
- B. F. Skinner. 1966. Operant behavior. In W. K. Honig (Ed.), Operant behavior areas of research and application. Appleton-Century-Crofts, New York.Google Scholar
- M. Skowron, M. Theunis, S. Rank, and A. Kappas. 2013. Affect and social processes in online communication—Experiments with an affective dialog system. IEEE Trans. Affect. Comput. 4, 3, 267–279. DOI: .Google Scholar
Digital Library
- P. Slovic, E. Peters, M. L. Finucane, and D. G. MacGregor. 2005. Affect, risk, and decision making. Health Psychol. 24, 4S, S35–S40. DOI: .Google Scholar
Cross Ref
- R. Smiljanic and R. C. Gilbert. 2017. Acoustics of clear and noise-adapted speech in children, young, and older adults. J. Speech Lang. Hear. Res. 60, 11, 3081–3096. DOI: .Google Scholar
Cross Ref
- C. A. Smith and P. C. Ellsworth. 1985. Patterns of cognitive appraisal in emotion. J. Pers. Soc. Psychol. 48, 4, 813–838.Google Scholar
Cross Ref
- C. A. Smith and L. D. Kirby. 2011. The role of appraisal and emotion in coping and adaptation. In The Handbook of Stress Science: Biology, Psychology, and Health. Springer, 195.Google Scholar
- C. A. Smith and R. S. Lazarus. 1990. Emotion and adaptation. In L. A. Pervin (Ed.), Handbook of Personality: Theory and Research. Guilford, New York, 609–637.Google Scholar
- I. Sneddon, M. McRorie, G. McKeown, and J. Hanratty. 2012. The Belfast induced natural emotion database. IEEE Trans. Pattern Anal. Mach. Intell. 3, 1, 32–41. DOI: .Google Scholar
Digital Library
- D. K. Snyder, R. E. Heyman, and S. N. Haynes. 2005. Evidence-based approaches to assessing couple distress. Psychol. Assess. 17, 3, 288–307. DOI: .Google Scholar
Cross Ref
- M. Soleymani, M. Pantic, and T. Pun. 2011. Multimodal emotion recognition in response to videos. IEEE Trans. Affect. Comput. 3, 1, 211–223. DOI: . https://ieeexplore.ieee.org/abstract/document/6095505/.Google Scholar
Digital Library
- M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic. 2012. A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3, 1, 42–55. DOI: .Google Scholar
Digital Library
- M. Soleymani, S. Asghari-Esfeden, Y. Fu, and M. Pantic. 2015. Analysis of EEG signals and facial expressions for continuous emotion detection. IEEE Trans. Affect. Comput. 7, 1, 17–28. DOI: .Google Scholar
Digital Library
- S. Song and S. Yamada. 2017. Expressing emotions through color, sound, and vibration with an appearance-constrained social robot. In 2017 12th ACM/IEEE International Conference on Human–Robot Interaction (HRI). IEEE, 2–11. DOI: .Google Scholar
Digital Library
- J. Speck. 2013. Walkable City: How Downtown Can Save America, One Step at a Time. Macmillan, New York, NY. ISBN: 978-0-374-28581.Google Scholar
- M. Spezialetti, G. Placidi, and S. Rossi. 2020. Emotion recognition for human–robot interaction: Recent advances and future perspectives. Front. Robot. AI. 7, 532279. DOI: .Google Scholar
Cross Ref
- C. D. Spielberger, R. L. Gorsuch, and R. E. Lushene. 1970. STAI manual for the state-trait anxiety inventory. Self-Evaluation Questionnaire. Consulting Psychologist Press, CA. https://psycnet.apa.org/doi/10.1037/t06496-000Google Scholar
- R. L. Spitzer, K. Kroenke, J. B. Williams, and B. Löwe. 2006. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 166, 1092–1097. ISSN: 00039926. DOI: .Google Scholar
Cross Ref
- R. Srinivasan and A. M. Martinez. 2018. Cross-cultural and cultural-specific production and perception of facial expressions of emotion in the wild. IEEE Trans. Affect. Comput. 12, 3, 707–721. DOI: .Google Scholar
Cross Ref
- R. A. Stevenson and T. W. James. February 2008. Affective auditory stimuli: Characterization of the International Affective Digitized Sounds (IADS) by discrete emotional categories. Behav. Res. Methods 40, 1, 315–321. ISSN: 1554-351X. DOI: . http://link.springer.com/10.3758/BRM.40.1.315.Google Scholar
Cross Ref
- R. A. Stevenson, J. A. Mikels, and T. W. James. 2007. Characterization of the affective norms for English words by discrete emotional categories. Behav. Res. Methods 39, 4, 1020–1024. DOI: .Google Scholar
Cross Ref
- J. R. Stroop. 1935. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 6, 643–662. ISSN: 00221015. DOI: .Google Scholar
Cross Ref
- S. Sumartojo, D. Lugli, D. Kulić, L. Tian, P. Carreno-Medrano, M. Mintrom, and A. Allen, August. 2020. Robotic Logics of Public Space in the Covid Pandemic. Retrieved Feb 1, 2021, from https://www.mediapolisjournal.com/2020/08/robotic-logics-of-public-space/.Google Scholar
- L. W. Sumner. 1996. Welfare, Happiness, and Ethics. Clarendon Press.Google Scholar
- B. Sun, L. Li, T. Zuo, Y. Chen, G. Zhou, and X. Wu. 2014a. Combining multimodal features with hierarchical classifier fusion for emotion recognition in the wild. In ICMI 2014—Proceedings of the 2014 International Conference on Multimodal Interaction. 481–486. ISBN: 9781450328852. DOI: .Google Scholar
Digital Library
- D. Sun, P. Paredes, and J. Canny. 2014b. MouStress: Detecting stress from mouse motion. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’14. Association for Computing Machinery, New York, NY, 61–70. ISBN: 9781450324731. DOI: .Google Scholar
Digital Library
- R. Sutton and A. Barto. 2018. Reinforcement Learning: An Introduction (2nd. ed.). Adaptive Computation and Machine Learning. The MIT Press, Cambridge, MA. Google Scholar
Digital Library
- R. E. Sutton and K. F. Wheatley. 2003. Teachers’ emotions and teaching: A review of the literature and directions for future research. Educ. Psychol. Rev. 15, 4, 327–358. DOI: .Google Scholar
Cross Ref
- M. Swain, A. Routray, and P. Kabisatpathy. 2018. Databases, features and classifiers for speech emotion recognition: A review. Int. J. Speech Technol. 21, 1, 93–120. DOI: .Google Scholar
Digital Library
- T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida. April. 2014. Wearable photoplethysmographic sensors—Past and present. Electronics 3, 2, 282–302. ISSN: 2079-9292. http://www.mdpi.com/2079-9292/3/2/282. DOI: .Google Scholar
Cross Ref
- A. Tanaka, A. Koizumi, H. Imai, S. Hiramatsu, E. Hiramoto, and B. de Gelder. 2010. I feel your voice: Cultural differences in the multisensory perception of emotion. Psychol. Sci. 21, 9, 1259–1262. DOI: .Google Scholar
Cross Ref
- E. M. Tapia, S. S. Intille, and K. Larson. 2004. Activity recognition in the home using simple and ubiquitous sensors. In A. Ferscha and F. Mattern (Eds.), Pervasive Computing. Pervasive 2004. Lecture Notes in Computer Science, Vol. 3001. Springer, Berlin, 158–175. DOI: .Google Scholar
Cross Ref
- C. Tappolet. 2016. Emotions, Value, and Agency. Oxford University Press.Google Scholar
- Y. R. Tausczik and J. W. Pennebaker. 2010. The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29, 1, 24–54. DOI: .Google Scholar
Cross Ref
- S. Taylor, N. Jaques, W. Chen, S. Fedor, A. Sano, and R. Picard. 2015. Automatic identification of artifacts in electrodermal activity data. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. ISBN: 9781424492718. DOI: .Google Scholar
Cross Ref
- S. Taylor, N. Jaques, E. Nosakhare, A. Sano, and R. Picard. 2017. Personalized multitask learning for predicting tomorrow’s mood, stress, and health. IEEE Trans. Affect. Comput. 11, 2, 200–213. DOI: .Google Scholar
Cross Ref
- T. ter Bogt, N. Canale, M. Lenzi, A. Vieno, and R. van den Eijnden. 2021. Sad music depresses sad adolescents: A listener’s profile. Psychol. Music 49, 2, 1–16. DOI: .Google Scholar
Cross Ref
- A. Thieme, D. Belgrave, and G. Doherty. August. 2020. Machine learning in mental health: A systematic review of the HCI literature to support the development of effective and implementable ML systems. ACM Trans. Comput. Hum. Interact. 27, 5, 1–5. ISSN: 1073-0516. DOI: .Google Scholar
Digital Library
- P. A. Thoits. 2004. Emotion norms, emotion work, and social order. In A. S. R. Manstead, N. Frijda, and A. Fischer (Eds.), Feelings and Emotions: The Amsterdam Symposium. Cambridge University Press, New York, NY, 359–378. DOI: .Google Scholar
Cross Ref
- A. Thomaz, G. Hoffman, and M. Cakmak. 2016. Computational human–robot interaction. Found. Trends Robot. 4, 2, 105–223. ISSN: 1935-8253. DOI: .Google Scholar
Digital Library
- E. L. Thorndike. 1898. Animal intelligence: An experimental study of the associative processes in animals. Psychol. Rev. Monogr. Suppl. 2, 4, i–109. DOI: .Google Scholar
Cross Ref
- E. L. Thorndike. 1911. Animal Intelligence: Experimental Studies. Macmillan Press, New York. DOI: .Google Scholar
Cross Ref
- S. Thrun and T. M. Mitchell. 1995. Lifelong robot learning. Rob. Auton. Syst. 15, 1–2, 25–46. DOI: .Google Scholar
Cross Ref
- S. Thunberg and T. Ziemke. 2020. Are people ready for social robots in public spaces? In IEEE International Conference on Human–Robot Interaction, HRI’20. ACM, 482–484. DOI: .Google Scholar
Digital Library
- L. Tian and S. Oviatt. 2021. A taxonomy of social errors in human–robot interaction. ACM Trans. Hum. Robot Interact. 10, 2, 1–32. DOI: .Google Scholar
Digital Library
- Y.-I. Tian, T. Kanade, and J. F. Cohn. 2001. Recognizing action units for facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intell. 23, 2, 97–115. DOI: .Google Scholar
Cross Ref
- Y. Tian, T. Kanade, and J. Cohn. 2005. Facial expression analysis. In Handbook of Face Recognition. Springer, New York, NY, 247–275. DOI: .Google Scholar
Cross Ref
- L. Tian, J. Moore, and C. Lai. 2016. Recognizing emotions in spoken dialogue with hierarchically fused acoustic and lexical features. In D. Hakkani-Tur, J. Hirschberg, D. Reynolds, F. Seide, Z. Hua Tan, and D. Povey (Eds.), 2016 IEEE Spoken Language Technology Workshop (SLT). IEEE, 565–572. DOI: .Google Scholar
Cross Ref
- L. Tian, M. Muszynski, C. Lai, J. D. Moore, T. Kostoulas, P. Lombardo, T. Pun, and G. Chanel. 2017. Recognizing induced emotions of movie audiences: Are induced and perceived emotions the same? In Affective Computing and Intelligent Interaction (ACII), 2017 Seventh International Conference on. IEEE, 28–35. DOI: .Google Scholar
Cross Ref
- L. Tian, P. Carreno-Medrano, S. Sumartojo, M. Mintrom, E. Coronado, G. Venture, and D. Kulić. 2020. User expectations of robots in public spaces: A co-design methodology. In A. R. Wagner, et al. (Eds.), International Conference on Social Robotics. ICSR 2020. Lecture Notes in Computer Science, Vol. 12483. Springer, Cham, 259–270. DOI: .Google Scholar
Digital Library
- L. Tian, P. Carreno-Medrano, A. Allen, S. Sumartojo, M. Mintrom, E. Coronado, G. Venture, E. Croft, and D. Kulić. 2021. Redesigning human–robot interaction in response to robot failures: A participatory design methodology. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. 1–8. DOI: .Google Scholar
Digital Library
- R. Tourangeau and P. C. Ellsworth. 1979. The role of facial response in the experience of emotion. J. Pers. Soc. Psychol. 37, 9, 1519–1531. DOI: .Google Scholar
Cross Ref
- D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. 2015. Learning spatiotemporal features with 3D convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, 4489–4497. DOI: .Google Scholar
Digital Library
- C. Tsiourti, A. Weiss, K. Wac, and M. Vincze. 2019. Multimodal integration of emotional signals from voice, body, and context: Effects of (in)congruence on emotion recognition and attitudes towards robots. Int. J. Soc. Robot. 11, 4, 555–573. DOI: .Google Scholar
Cross Ref
- J. Tu, G. Yu, J. Wang, C. Domeniconi, and X. Zhang. 2020. Attention-aware answers of the crowd. In Proceedings of the 2020 SIAM International Conference on Data Mining. SIAM, 451–459.Google Scholar
- M. Turk, 2014. Multimodal interaction: A review. Pattern Recognit. Lett. 36, 189–195. ISSN: 01678655. DOI: .Google Scholar
Digital Library
- J. M. Tybur, D. Lieberman, R. Kurzban, and P. DeScioli. 2013. Disgust: Evolved function and structure. Psychol. Rev. 120, 1, 65–84. DOI: .Google Scholar
Cross Ref
- P. Tzirakis, G. Trigeorgis, M. A. Nicolaou, B. W. Schuller, and S. Zafeiriou. 2017. End-to-end multimodal emotion recognition using deep neural networks. IEEE J. Sel. Top. Signal Process. 11, 8, 1301–1309. https://ieeexplore.ieee.org/abstract/document/8070966/. DOI: .Google Scholar
Cross Ref
- T. Umematsu, A. Sano, and R. Picard. 2019a. Daytime data and LSTM can forecast tomorrow’s stress, health, and happiness. In IEEE Engineering, Medicine and Biology Conference. DOI: .Google Scholar
Cross Ref
- T. Umematsu, A. Sano, S. Taylor, and R. Picard. 2019b. Improving students’ daily life stress forecasting using LSTM neural networks. In IEEE Biomedical and Health Informatics. DOI: .Google Scholar
Cross Ref
- UN General Assembly. 1949. Universal Declaration of Human Rights, Vol. 3381. Department of State, United States of America.Google Scholar
- United Nations. 2020. COVID-19 and human rights: We are all in this together. Retrieved March 4, 2021, from https://unsdg.un.org/resources/covid-19-and-human-rights-we-are-all-together.Google Scholar
- G. Valenza, A. Lanata, and E. P. Scilingo. 2012. The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans. Affect. Comput. 3, 2, 237–249. DOI: .Google Scholar
Digital Library
- G. Valenza, L. Citi, A. Lanata, E. P. Scilingo, and R. Barbieri. 2014. Revealing real-time emotional responses: A personalized assessment based on heartbeat dynamics. Sci. Rep. 4, 1, 1–13. DOI: .Google Scholar
Cross Ref
- J. Vallverdú. 2009. Handbook of Research on Synthetic Emotions and Sociable Robotics: New Applications in Affective Computing and Artificial Intelligence. IGI Global. DOI: .Google Scholar
Digital Library
- M. Valstar. 2019. Multimodal databases. In The Handbook of Multimodal–Multisensor Interfaces: Language Processing, Software, Commercialization, and Emerging Directions, Vol. 3. Association for Computing Machinery and Morgan & Claypool, 393–421. DOI: .Google Scholar
Digital Library
- B. van Rijn, M. Cooper, A. Jackson, and C. Wild. 2017. Avatar-based therapy within prison settings: Pilot evaluation. Br. J. Guid. Counc. 45, 3, 268–283. DOI: .Google Scholar
Cross Ref
- A. E. van’t Veer and R. Giner-Sorolla. 2016. Pre-registration in social psychology—A discussion and suggested template. J. Exp. Soc. Psychol. 67, 2–12. DOI: .Google Scholar
Cross Ref
- E. Vasey, S. Ko, and M. Jeon. 2018. In-vehicle affect detection system: Identification of emotional arousal by monitoring the driver and driving style. In Adjunct Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI’18. Association for Computing Machinery, New York, NY, 243–247. ISBN: 9781450359474. DOI: .Google Scholar
Digital Library
- D. Vasquez, B. Okal, and K. O. Arras. 2014. Inverse reinforcement learning algorithms and features for robot navigation in crowds: An experimental comparison. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 1341–1346. DOI: .Google Scholar
Cross Ref
- G. K. Verma and U. S. Tiwary. 2014. Multimodal fusion framework: A multiresolution approach for emotion classification and recognition from physiological signals. NeuroImage, 102, Pt 1, 162–172. https://www.sciencedirect.com/science/article/pii/S1053811913010999. DOI: .Google Scholar
Cross Ref
- V. S. Verykios. 2013. Association rule hiding methods. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 3, 1, 28–36. DOI: .Google Scholar
Digital Library
- G. Vigliocco, L. Meteyard, M. Andrews, and S. Kousta. 2009. Toward a theory of semantic representation. Lang. Cogn. 1, 2, 219–247. DOI: .Google Scholar
Cross Ref
- A. Vinciarelli, M. Pantic, D. Heylen, C. Pelachaud, I. Poggi, F. D’Errico, and M. Schroeder. 2012. Bridging the gap between social animal and unsocial machine: A survey of social signal processing. IEEE Trans. Affect. Comput. 3, 1, 69–87. DOI: .Google Scholar
Digital Library
- P. Viola and M. J. Jones. 2004. Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154. ISSN: 09205691. DOI: .Google Scholar
Digital Library
- P. Voigt and A. Von dem Bussche. 2017. The EU General Data Protection Regulation (GDPR). A Practical Guide (1st. ed.). Springer International Publishing, Cham. DOI: .Google Scholar
Digital Library
- B. J. Walker. 2018. Smart Grid System Report 2018. Report to congress, United States Department of Energy.Google Scholar
- H. G. Wallbott and K. R. Scherer. 1986. Cues and channels in emotion recognition. J. Pers. Soc. Psychol. 51, 4, 690–699. DOI: .Google Scholar
Cross Ref
- M. Wand and T. Schultz. 2014. Pattern learning with deep neural networks in EMG-based speech recognition. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 4200–4203. DOI: .Google Scholar
Cross Ref
- D. Wang and Y. Shang. 2013. Modeling physiological data with deep belief networks. Int. J. Inf. Educ. Technol. 3, 5, 505–511. DOI: .Google Scholar
Cross Ref
- R. Wang, F. Chen, Z. Chen, T. Li, G. Harari, S. Tignor, X. Zhou, D. Ben-Zeev, and A. T. Campbell. 2014a. StudentLife: Assessing mental health, academic performance and behavioral trends of college students using smartphones. In UbiComp 2014—Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ISBN: 9781450329682. DOI: .Google Scholar
Digital Library
- W. Wang, G. Athanasopoulos, S. Yilmazyildiz, G. Patsis, V. Enescu, H. Sahli, W. Verhelst, A. Hiolle, M. Lewis, and L. Canamero. September. 2014b. Natural emotion elicitation for emotion modeling in child–robot interactions. In WOCCI, 51–56. https://www.isca-speech.org/archive_v0/wocci_2014/papers/wc14_051.pdf.Google Scholar
- S. Wang, S. O. Lilienfeld, and P. Rochat. 2015. The uncanny valley: Existence and explanations. Rev. Gen. Psychol. 19, 4, 393–407. DOI: .Google Scholar
Cross Ref
- R. Wang, W. Wang, A. daSilva, J. F. Huckins, W. M. Kelley, T. F. Heatherton, and A. T. Campbell. March. 2018. Tracking depression dynamics in college students using mobile phone and wearable sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1, 1–26. DOI: .Google Scholar
Digital Library
- R. Wang, Y. Yuan, Y. Liu, J. Zhang, P. Liu, Y. Lu, and Y. Yao. Sept. 2019. Using street view data and machine learning to assess how perception of neighborhood safety influences urban residents’ mental health. Health Place. 59, 102186. ISSN: 1353-8292. http://www.sciencedirect.com/science/article/pii/S1353829219304526. DOI: .Google Scholar
Cross Ref
- D. Watson and L. A. Clark. 1999. The PANAS-X: Manual for the positive and negative affect schedule—Expanded form. University of Iowa. https://www2.psychology.uiowa.edu/faculty/clark/panas-x.pdf.Google Scholar
- D. Watson, L. A. Clark, and A. Tellegen. 1988. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Pers. Soc. Psychol. 54, 6, 1063–1070. ISSN: 0022-3514. DOI: .Google Scholar
Cross Ref
- D. F. Watt. 2018. Psychotherapy in an age of neuroscience: Bridges to affective neuroscience. In Revolutionary Connections. Routledge, 79–115.Google Scholar
- G. Weinberg, M. Bretan, G. Hoffman, and S. Driscoll. 2020. Robotic Musicianship: Embodied Artificial Creativity and Mechatronic Musical Expression, Vol. 8. Springer Nature.Google Scholar
Cross Ref
- K. K. Weisel, L. M. Fuhrmann, M. Berking, H. Baumeister, P. Cuijpers, and D. D. Ebert. 2019. Standalone smartphone apps for mental health—A systematic review and meta-analysis. NPJ Digit. Med. 2, 118. DOI: .Google Scholar
Cross Ref
- A. Weiss, R. Bernhaupt, M. Lankes, and M. Tscheligi. 2009. The USUS evaluation framework for human–robot interaction. In AISB2009: Proceedings of the Symposium on New Frontiers in Human–Robot Interaction, Vol. 4. 11–26.Google Scholar
- J. Weizenbaum. 1972. How does one insult a machine? Science 176, 609–614. DOI: .Google Scholar
Cross Ref
- J. Weizenbaum. 1976. Computer Power and Human Reason: From Judgment to Calculation. W. H. Freeman and Company. Google Scholar
Digital Library
- Z. Wen and T. S. Huang. 2003. Capturing subtle facial motions in 3D face tracking. In Proceedings Ninth IEEE International Conference on Computer Vision. IEEE, 1343–1350. DOI: .Google Scholar
Digital Library
- A. F. Westin. 1968. Privacy and freedom. Wash. Lee Law Rev. 25, 1, 166.Google Scholar
- C. M. Whissell. 1989. The dictionary of affect in language. In The Measurement of Emotions. Elsevier, 113–131. DOI: .Google Scholar
Cross Ref
- T. Whitaker. 2018. Linking Affect and the Built Environment Using Mobile Sensors and Geospatial Analysis. Ph.D. thesis. Kansas State University, Manhattan, KS. https://krex.k-state.edu/dspace/handle/2097/38895.Google Scholar
- E. White. 1983. Site Analysis: Diagramming Information for Architectural Design. Architectural Media. ISBN: 978-1928643043. https://books.google.com/books?id=oV4WRAAACAAJ.Google Scholar
- S. Whitehead, J. Karlsson, and J. Tenenberg. 1993. Learning multiple goal behavior via task decomposition and dynamic policy merging. In J. H. Connell and S. Mahadevan (Eds.), Robot Learning. The Springer International Series in Engineering and Computer Science (Knowledge Representation, Learning and Expert Systems), Vol. 233. Springer, Boston, MA, 45–78. ISBN: 978-1-4615-3184-5. DOI: .Google Scholar
Cross Ref
- S. C. Widen and J. A. Russell. 2008. Children acquire emotion categories gradually. Cogn. Dev. 23, 2, 291–312. DOI: .Google Scholar
Cross Ref
- J. H. G. Williams, C. F. Huggins, B. Zupan, M. Willis, T. E. van Rheenen, W. Sato, R. Palermo, C. Ortner, M. Krippl, M. Kret, J. M. Dickson, C. R. Li, and L. Lowe. 2020. A sensorimotor control framework for understanding emotional communication and regulation. Neurosci. Biobehav. Rev. 112, 503–518. DOI: .Google Scholar
Cross Ref
- K. Winkle, P. Caleb-Solly, A. Turton, and P. Bremner. 2019. Mutual shaping in the design of socially assistive robots: A case study on social robots for therapy. Int. J. Soc. Robot. 1–20. DOI: .Google Scholar
Cross Ref
- K. L. Wolf. 2005. Business district streetscapes, trees, and consumer response. J. For. 103, 8, 396–400.Google Scholar
- K. Wolf, A. Schmidt, A. Bexheti, and M. Langheinrich. 2014. Lifelogging: You’re wearing a camera? IEEE Pervasive Comput. 13, 3, 8–12. DOI: .Google Scholar
Cross Ref
- M. Wöllmer, F. Eyben, S. Reiter, B. Schuller, C. Cox, E. Douglas-Cowie, and R. Cowie. 2008. Abandoning emotion classes—Towards continuous emotion recognition with modelling of long-range dependencies. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH. DOI: .Google Scholar
Cross Ref
- R. S. Woodworth and H. Schlosberg. 1938. Experimental Psychology. Henry Holt and Company, New York.Google Scholar
- World Health Organization. 2019a. Mental Disorders. Fact sheet, World Health Organization. Retrieved March 4, 2021, from https://www.who.int/news-room/fact-sheets/detail/mental-disorders.Google Scholar
- World Health Organization. 2019b. Mental Health in the Workplace. Information sheet, World Health Organization. Retrieved March 4, 2021, from https://www.who.int/mental_health/in_the_workplace/en/.Google Scholar
- C. H. Wu, Z. J. Chuang, and Y. C. Lin. June. 2006. Emotion recognition from text using semantic labels and separable mixture models. ACM Trans. Asian Lang. Inf. Process. 5, 2, 165–182. ISSN: 15300226. DOI: .Google Scholar
Digital Library
- J. Wu, Z. Lin, and H. Zha. 2015. Multiple models fusion for emotion recognition in the wild. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction. 475–481. DOI: .Google Scholar
Digital Library
- X. Xiao and Y. Tao. 2006. Personalized privacy preservation. In Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data. 229–240. DOI: .Google Scholar
Digital Library
- B. Xiao, Z. E. Imel, P. Georgiou, D. C. Atkins, and S. S. Narayanan. 2016. Computational analysis and simulation of empathic behaviors: A survey of empathy modeling with behavioral signal processing framework. Curr. Psychiatry Rep. 18, 5, 49. DOI: .Google Scholar
Cross Ref
- P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and M. Naehrig. 2014. Crypto-nets: Neural networks over encrypted data. arXiv preprint arXiv:1412.6181.Google Scholar
- C. Xu, S. Cetintas, K. Lee, and L. Li. 2014. Visual sentiment prediction with deep convolutional neural networks. arXiv preprint arXiv:1411.5731.Google Scholar
- Y. Xu, I. Hübener, A.-K. Seipp, S. Ohly, and K. David. 2017. From the lab to the real-world: An investigation on the influence of human movement on emotion recognition using physiological signals. In 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 345–350. DOI: .Google Scholar
Cross Ref
- T. Xu, J. White, S. Kalkan, and H. Gunes. 2020. Investigating bias and fairness in facial expression recognition. In A. Bartoli and A. Fusiello (Eds.), Computer Vision—ECCV 2020 Workshops. Springer, 506–523. DOI: .Google Scholar
Digital Library
- M. Yadav, T. Chaspari, J. Kim, and C. R. Ahn. 2018. Capturing and quantifying emotional distress in the built environment. In Proceedings of the Workshop on Human–Habitat for Health (H3): Human–Habitat Multimodal Interaction for Promoting Health and Well-Being in the Internet of Things Era, H3’18. Event-place: Boulder, Colorado. ACM, New York, NY, 9:1–9:8. ISBN: 978-1-4503-6075-3. DOI: .Google Scholar
Digital Library
- E. Yadegaridehkordi, N. F. B. M. Noor, M. N. B. Ayub, H. B. Affal, and N. B. Hussin. 2019. Affective computing in education: A systematic review and future research. Comput. Educ. 142, 103649. ISSN: 0360-1315. DOI: .Google Scholar
Digital Library
- T. Yanaru. 1995. An emotion processing system based on fuzzy inference and subjective observations. In Proceedings—1995 2nd New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, ANNES 1995. ISBN: 0818671742. DOI: .Google Scholar
Digital Library
- C.-C. Yang and Y.-L. Hsu. 2012. Remote monitoring and assessment of daily activities in the home environment. J. Clin. Gerontol. Geriatr. 3, 3, 97–104. ISSN: 2210-8335. DOI: .Google Scholar
Cross Ref
- G. N. Yannakakis. 2018. Enhancing health care via affective computing. Malta J. Health Sci. 5, 1, 38–42. DOI: .Google Scholar
Cross Ref
- G. N. Yannakakis, R. Cowie, and C. Busso. 2017. The ordinal nature of emotions. In Int. Conference on Affective Computing and Intelligent Interaction. DOI: .Google Scholar
Cross Ref
- Y. Yao, Z. Liang, Z. Yuan, P. Liu, Y. Bie, J. Zhang, R. Wang, J. Wang, and Q. Guan. December. 2019. A human–machine adversarial scoring framework for urban perception assessment using street-view images. Int. J. Geogr. Inf. Sci. 33, 12, 2363–2384. ISSN: 1365-8816. DOI: .Google Scholar
Cross Ref
- H. Yates. 2018. Affective Intelligence in Built Environments. Ph.D. thesis. Kansas State University, Manhattan, KS. https://krex.k-state.edu/dspace/handle/2097/38790.Google Scholar
- H. Yates, B. Chamberlain, and W. H. Hsu. 2017. A spatially explicit classification model for affective computing in built environments. In 2017 Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). IEEE, 100–104. DOI: .Google Scholar
Cross Ref
- A. Yatsuda, T. Haramaki, and H. Nishino. 2018. A robot gesture framework for watching and alerting the elderly. In International Conference on Network-Based Information Systems. Springer, 132–143. DOI: .Google Scholar
Cross Ref
- L. Yin, X. Wei, Y. Sun, J. Wang, and M. J. Rosato. 2006. A 3D facial expression database for facial behavior research. In 7th International Conference on Automatic Face and Gesture Recognition (FGR06). IEEE, 211–216. DOI: .Google Scholar
Digital Library
- Z. Yin, M. Zhao, Y. Wang, J. Yang, and J. Zhang. 2017. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput. Methods Programs Biomed. 140, 93–110. DOI: .Google Scholar
Digital Library
- H. Yu, E. B. Klerman, R. W. Picard, and A. Sano. 2019. Personalized wellbeing prediction using behavioral, physiological and weather data. In 2019 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2019—Proceedings. ISBN: 9781728108483. DOI: .Google Scholar
Cross Ref
- J. C. Yuille and G. L. Wells. 1991. Concerns about the application of research findings: The issue of ecological validity. In J. Doris (Ed.), The Suggestibility of Children’s Recollections. Jun 1989, Cornell U, Ithaca, NY. American Psychological Association, Washington, DC, 118–128. DOI: .Google Scholar
Cross Ref
- A. B. Zadeh, P. P. Liang, S. Poria, E. Cambria, and L.-P. Morency. 2018. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Vol. 1: Long Papers), 2236–2246.Google Scholar
Cross Ref
- S. Zafeiriou, A. Papaioannou, I. Kotsia, M. Nicolaou, and G. Zhao. 2016. Facial affect “in-the-wild”: A survey and a new database. In 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1487–1498. DOI: .Google Scholar
Cross Ref
- S. Zafeiriou, D. Kollias, M. A. Nicolaou, A. Papaioannou, G. Zhao, and I. Kotsia. 2017. Aff-wild: Valence and arousal ‘in-the-wild’ challenge. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1980–1987. DOI: .Google Scholar
Cross Ref
- A. Zafiroglu, J. Healey, and T. Plowman. 2012. Navigation to multiple local transportation futures: Cross-interrogating remembered and recorded drives. In Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI’12. Association for Computing Machinery, New York, NY, 139–146. ISBN: 9781450317511. DOI: .Google Scholar
Digital Library
- J. Zaki. 2018. Empathy is a moral force. In K. Gray and J. Graham (Eds.), Atlas of Moral Psychology. Guilford Press, 49–58.Google Scholar
- M. D. Zeiler, G. W. Taylor, L. Sigal, I. Matthews, and R. Fergus. 2011. Facial expression transfer with input–output temporal restricted Boltzmann machines. In Advances in Neural Information Processing Systems, 1629–1637. Google Scholar
Digital Library
- Z. Zeng, Y. Hu, M. Liu, Y. Fu, and T. S. Huang. 2006. Training combination strategy of multi-stream fused hidden Markov model for audio-visual affect recognition. In Proceedings of the 14th ACM International Conference on Multimedia. ACM, 65–68. DOI: .Google Scholar
Digital Library
- Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang. 2008. A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1, 39–58. DOI: .Google Scholar
Digital Library
- C. Zhang and Z. Zhang. 2010. A Survey of Recent Advances in Face Detection. Technical report MSR-TR-2010-66. https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/facedetsurvey.pdf.Google Scholar
- F. Zhang, B. Zhou, L. Liu, Y. Liu, H. H. Fung, H. Lin, and C. Ratti. December. 2018a. Measuring human perceptions of a large-scale urban region using machine learning. Landsc. Urban Plan. 180, 148–160. ISSN: 0169-2046. http://www.sciencedirect.com/science/article/pii/S0169204618308545. DOI: .Google Scholar
Cross Ref
- G. Zhang, D. Lu, and H. Liu. 2018b. Strategies to utilize the positive emotional contagion optimally in crowd evacuation. IEEE Trans. Affect. Comput. 11, 4, 708–721. DOI: .Google Scholar
Digital Library
- Y. Zhang, F. Weninger, S. Björn, and R. Picard. 2019. Holistic affect recognition using PaNDA: Paralinguistic non-metric dimensional analysis. IEEE Trans. Affect. Comput. 1. DOI: .Google Scholar
Cross Ref
- D. Zhang, S. Mishra, E. Brynjolfsson, J. Etchemendy, D. Ganguli, B. Grosz, T. Lyons, J. Manyika, J. C. Niebles, M. Sellitto, Y. Shoham, J. Clark, and R. Perrault. 2021. The AI Index 2021 Annual Report. AI Index Steering Committee, Human-Centered AI Institute, Stanford University. https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report_Master.pdf.Google Scholar
- R. Zhao, T. Sinha, A. W. Black, and J. Cassell. 2016. Socially-aware virtual agents: Automatically assessing dyadic rapport from temporal patterns of behavior. In International Conference on Intelligent Virtual Agents. Springer, 218–233. DOI: .Google Scholar
Cross Ref
- M. Zhao, F. Adib, and D. Katabi. August. 2018. Emotion recognition using wireless signals. Commun. ACM 61, 9, 91–100. ISSN: 0001-0782. DOI: .Google Scholar
Digital Library
- J. Zhao, R. Li, J. Liang, S. Chen, and Q. Jin. 2019a. Adversarial domain adaption for multi-cultural dimensional emotion recognition in dyadic interactions. In Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop. 37–45. DOI: .Google Scholar
Digital Library
- P. Zhao, C. X. Lu, J. Wang, C. Chen, W. Wang, N. Trigoni, and A. Markham. 2019b. mID: Tracking and identifying people with millimeter wave radar. In 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS). 33–40. DOI: .Google Scholar
Cross Ref
- S. Zhou and L. Tian. 2020. Would you help a sad robot? Influence of robots’ emotional expressions on human–multi-robot collaboration. In 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). IEEE, 1243–1250. DOI: .Google Scholar
Cross Ref
- X. Zhu, W.-L. Zheng, B.-L. Lu, X. Chen, S. Chen, and C. Wang. 2014. EOG-based drowsiness detection using convolutional neural networks. In 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 128–134. DOI: .Google Scholar
Cross Ref
- S. Zuboff. 2019. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power. PublicAffairs. Google Scholar
Digital Library
Cited By
-
Urbanik P and Mikulecky P (2025). Smart Cities as Affective Environments Progress in Artificial Intelligence, 10.1007/978-3-031-73497-7_13, (154-165),
-
Klęczek K, Rice A and Alimardani M (2024). Robots as Mental Health Coaches: A Study of Emotional Responses to Technology-Assisted Stress Management Tasks Using Physiological Signals, Sensors, 10.3390/s24134032, 24:13, (4032)
-
Mishra D, Deshpande S, Anna M and Tiwari A (2024). Exploring the Ethical Dimensions and Societal Consequences of Affective Computing Affective Computing for Social Good, 10.1007/978-3-031-63821-3_5, (91-105),
-
Uddin M, Zamzmi G and Canavan S Cooperative Learning for Personalized Context-Aware Pain Assessment From Wearable Data, IEEE Journal of Biomedical and Health Informatics, 10.1109/JBHI.2023.3294903, 27:11, (5260-5271)
-
D’Amelio T, Bruno N, Bugnon L, Zamberlan F and Tagliazucchi E (2023). Affective Computing as a Tool for Understanding Emotion Dynamics from Physiology: A Predictive Modeling Study of Arousal and Valence 2023 11th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), 10.1109/ACIIW59127.2023.10388155, 979-8-3503-2745-8, (1-7)
-
Bonilla-Huerta E, Morales-Caporal R, Sánchez-Lucero E, Hernández-Hernández C and González-Meneses Y (2022). Hybrid Model Recognition and Classification of Human Emotions in Thermal Images, Proceedings of the Technical University of Sofia, 10.47978/TUS.2022.72.03.004, 72:3, Online publication date: 14-Nov-2022.
-
Surov I (2022). Opening the Black Box: Finding Osgood’s Semantic Factors in Word2vec SpaceОткрытие чёрного ящика: Извлечение семантических факторов Осгуда из языковой модели word2vec, Informatics and AutomationИнформатика и автоматизация, 10.15622/ia.21.5.3, 21:5, (916-936)
-
Stappen L, Baird A, Lienhart M, Bätz A and Schuller B (2022). An Estimation of Online Video User Engagement From Features of Time- and Value-Continuous, Dimensional Emotions, Frontiers in Computer Science, 10.3389/fcomp.2022.773154, 4
-
Champion E (2022). What Have We Learnt from Game–Style Interaction? Playing with the Past: Into the Future, 10.1007/978-3-031-10932-4_5, (93-137),
Index Terms
- Applied Affective Computing
Recommendations
Affective computing vs. affective placebo
Relaxation training is an application of affective computing with important implications for health and wellness. After detecting user s affective state through physiological sensors, a relaxation training application can provide the user with explicit ...
Affective computing: a reverence for a century of research
COST'11: Proceedings of the 2011 international conference on Cognitive Behavioural SystemsTo bring affective computing a leap forward, it is best to start with a step back. A century of research has been conducted on topics, which are crucial for affective computing. Understanding this vast amount of research will accelerate progress on ...