Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Experience: Managing Misinformation in Social Media—Insights for Policymakers from Twitter Analytics

Published: 16 November 2019 Publication History

Abstract

Governance of misinformation is a serious concern in social media platforms. Based on experiences gathered from different case studies, we offer insights for the policymakers on managing misinformation in social media. These platforms are widely used for not just communication but also content consumption. Managing misinformation is thus a challenge for policymakers and the platforms. This article explores the factors of rapid propagation of misinformation based on our experiences in the domain. An average of about 1.5 million tweets were analysed in each of the three different cases surrounding misinformation. The findings indicate that the tweet emotion and polarity plays a significant role in determining whether the shared content is authentic or not. A deeper exploration highlights that a higher element of surprise combined with other emotions is present in such tweets. Further, the tweets that show case-neutral content often lack the possibilities of virality when it comes to misinformation. The second case explores whether the misinformation is being propagated intentionally by means of the identified fake profiles or it is done by authentic users, which can also be either intentional, for gaining attention, or unintentional, under the assumption that the information is correct. Last, network attributes, including topological analysis, community, and centrality analysis, also catalyze the propagation of misinformation. Policymakers can utilize these findings in this experience study for the governance of misinformation. Tracking and disruption in any one of the identified drivers could act as a control mechanism to manage misinformation propagation.

References

[1]
D. M. Romero, W. Galuba, S. Asur, and B. A. Huberman. 2011. Influence and passivity in social media. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Berlin, 18--33.
[2]
S. Kwon, M. Cha, K. Jung, W. Chen, and Y. Wang. 2013. Prominent features of rumor propagation in online social media. In Proceedings of the IEEE 13th International Conference on Data Mining (ICDM’13). IEEE, 1103--1108.
[3]
K. Hill. 2012. Hurricane Sandy, @ComfortablySmug, and the Flood of Social Media Misinformation. Retrieved from http://www.forbes.com/sites/kashmirhill/2012/10/30/hurricane-sandy-and-the-flood-of social-media-misinformation/.
[4]
E. Agichtein, C. Castillo, D. Donato, A. Gionis, and G. Mishne. 2008. Finding high-quality content in social media. In Proceedings of the International Conference on Web Search and Data Mining. ACM, 183--194.
[5]
C. Castillo, M. Mendoza, and B. Poblete. 2011. Information credibility on Twitter. In Proceedings of the 20th International Conference on World Wide Web. ACM, 675--684.
[6]
F. Jin, W. Wang, L. Zhao, E. Dougherty, Y. Cao, C. T. Lu, and N. Ramakrishnan. 2014. Misinformation propagation in the age of Twitter. Computer 47, 12 (2014), 90--94.
[7]
H. Allcott and M. Gentzkow. 2017. Social media and fake news in the 2016 election. J. Economic Perspect. 31, 2 (2017), 211--36.
[8]
A. Gupta, H. Lamba, and P. Kumaraguru. 2013a. $1.00 per rt# bostonmarathon# prayforboston: Analyzing fake content on Twitter. In Proceedings of the eCrime Researchers Summit (eCRS’13). IEEE, 1--12.
[9]
K. Starbird, J. Maddock, M. Orand, P. Achterman, and R. M. Mason. 2014. Rumors, false flags, and digital vigilantes: Misinformation on Twitter after the 2013 Boston marathon bombing. In Proceedings of the iConference.
[10]
S. O. Oyeyemi, E. Gabarron, and R. Wynn. 2014. Ebola, Twitter, and misinformation: A dangerous combination? Brit. Med. J. 349 (2014), 61--78.
[11]
R. Ehrenberg. 2012. Social media sway: Worries over political misinformation on Twitter attract scientists' attention. Sci. News 182, 8 (2012), 22--25.
[12]
O. Oh, K. H. Kwon, and H. R. Rao. 2010. An exploration of social media in extreme events: Rumor theory and Twitter during the Haiti earthquake 2010. In Proceedings of the International Conference on Computer and Information Science (ICIS’10). 231.
[13]
A. Gupta, H. Lamba, P. Kumaraguru, and A. Joshi. 2013b. Faking Sandy: Characterizing and identifying fake images on Twitter during Hurricane Sandy. In Proceedings of the 22nd International Conference on World Wide Web. ACM, 729--736.
[14]
J. Shin, L. Jian, K. Driscoll, and F. Bar. 2018. The diffusion of misinformation on social media: Temporal pattern, message, and source. Comput. Hum. Behav. 83 (2018), 278--287.
[15]
K. Munger, P. Egan, J. Nagler, J. Ronen, and J. A. Tucker. 2015. Political knowledge and misinformation in the era of social media: Evidence from the 2015 UK Election. In APSA Annual Meeting 2015.
[16]
A. Ho, C. McGrath, and N. Mattheos. 2017. Social media patient testimonials in implant dentistry: Information or misinformation? Clin. Oral Implants Res. 28, 7 (2017), 791--800.
[17]
L. Palen and A. L. Hughes. 2018. Social media in disaster communication. In Handbook of Disaster Research. Springer, Cham, 497--518.
[18]
R. Aswani, A. K. Kar, P. V. Ilavarasan, and Y. K. Dwivedi. 2018. Search engine marketing is not all gold: Insights from Twitter and SEOClerks. Int. J. Info. Manage. 38, 1 (2018), 107--116.
[19]
R. Aswani, A. K. Kar, and P. V. Ilavarasan. 2017. Detection of spammers in Twitter marketing: A hybrid approach using social media analytics and bio inspired computing. Info. Syst. Front. 20, 3 (2017), 515--530.
[20]
C. Shao, G. L. Ciampaglia, O. Varol, A. Flammini, and F. Menczer. 2017. The spread of fake news by social bots. ArXiv Preprint Arxiv:1707.07592.
[21]
A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter. 2018. Detection and resolution of rumours in social media: A survey. ACM Comput. Surveys 51, 2 (2018), 32.
[22]
R. S. Wyer. 1974. Cognitive Organization and Change: An Information Processing Approach. Taylor 8 Francis.
[23]
J. Berger and K. Milkman. 2010. Social transmission, emotion, and the virality of online content. Wharton Research Paper, 106.
[24]
M. Guerini, C. Strapparava, and G. Özbal. 2011. Exploring text virality in social networks. In Proceedings of the International AAAI Conference on Web and Social Media (ICWSM’11).
[25]
I. Roelens, P. Baecke, and D. F. Benoit. 2016. Identifying influencers in a social network: The value of real referral data. Decis. Support Syst. 91 (2016), 25--36.
[26]
K. K. Kumar and G. Geethakumari. 2014. Detecting misinformation in online social networks using cognitive psychology. Human-centric Comput. Info. Sci. 4, 1 (2014), 14.
[27]
M. Mendoza, B. Poblete, and C. Castillo. 2010. Twitter under crisis: Can we trust what we RT? In Proceedings of the 1st Workshop on Social Media Analytics. ACM, 71--79.
[28]
J. Ratkiewicz, M. Conover, M. Meiss, B. Gonçalves, S. Patil, A. Flammini, and F. Menczer. 2011. Truthy: Mapping the spread of astroturf in microblog streams. In Proceedings of the 20th International Conference Companion on World Wide Web. ACM, 249--252.
[29]
A. Gupta and P. Kumaraguru. 2012. Credibility ranking of tweets during high impact events. In Proceedings of the 1st Workshop on Privacy and Security in Online Social Media. ACM, 2.
[30]
J. Berger. 2011. Arousal increases social transmission of information. Psychol. Sci. 22, 7 (2011), 891--893.
[31]
E. M. Cotter. 2008. Influence of emotional content and perceived relevance on spread of urban legends: A pilot study. Psychol. Rep. 102, 2 (2008), 623--629.
[32]
K. Peters, Y. Kashima, and A. Clark. 2009. Talking about others: Emotionality and the dissemination of social information. Eur. J. Soc. Psychol. 39, 2 (2009), 207--222.
[33]
F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida. 2010. Detecting spammers on Twitter. In Proceedings of the Collaboration, Electronic Messaging, Anti-abuse and Spam Conference (CEAS’10). 12.
[34]
K. Lee, B. D. Eoff, and J. Caverlee. 2011. Seven months with the devils: A long-term study of content polluters on Twitter. In Proceedings of the International AAAI Conference on Web and Social Media (ICWSM’11).
[35]
B. Wang, A. Zubiaga, M. Liakata, and R. Procter. 2015. Making the most of tweet-inherent features for social spam detection on Twitter. Arxiv Preprint Arxiv:1503.07405.
[36]
K. Lee, J. Caverlee, and S. Webb. 2010. Uncovering social spammers: Social honeypots+ machine learning. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 435--442.
[37]
D. Gayo Avello and D. J. Brenes Martínez. 2010. Overcoming spammers in Twitter—A tale of five algorithms. In Proceedings of the Spanish Conference on Information Retrieval.
[38]
A. H. Wang. 2010a. Don't follow me: Spam detection in Twitter. In Proceedings of the International Conference on Security and Cryptography (SECRYPT’10). IEEE, 1--10.
[39]
A. H. Wang. 2010b. Detecting spam bots in online social networking sites: A machine learning approach. In Proceedings of the IFIP Annual Conference on Data and Applications Security and Privacy. Springer, Berlin, 335--342.
[40]
S. Lewandowsky, U. K. Ecker, C. M. Seifert, N. Schwarz, and J. Cook. 2012. Misinformation and its correction: Continued influence and successful debiasing. Psychol. Sci. Public Int. 13, 3 (2012), 106--131.
[41]
R. E. Sanders. 1988. Dan Sperber and Deirdre Wilson, Relevance: Communication and Cognition, Oxford: Basil Blackwell, 1986, pp. 265. Lang. Soc. 17, 4 (1988), 604--609.
[42]
N. Schwarz. 1994. Judgment in a social context: Biases, shortcomings, and the logic of conversation. In Advances in Experimental Social Psychology, Vol. 26. Academic Press, 123--162.
[43]
M. R. Morris, S. Counts, A. Roseway, A. Hoff, and J. Schwarz. 2012. Tweeting is believing?: Understanding microblog credibility perceptions. In Proceedings of the ACM Conference on Computer Supported Cooperative Work. ACM, 441--450.
[44]
Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia. 2010. Who is tweeting on Twitter: Human, bot, or cyborg? In Proceedings of the 26th Annual Computer Security Applications Conference. ACM, 21--30.
[45]
Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia. 2012. Detecting automation of Twitter accounts: Are you a human, bot, or cyborg? IEEE Trans. Depend. Secure Comput. 9, 6 (2012), 811--824.
[46]
C. M. Zhang and V. Paxson. 2011. Detecting and analyzing automated activity on Twitter. In Proceedings of the International Conference on Passive and Active Network Measurement. Springer, Berlin, 102--111.
[47]
E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. 2012. The role of social networks in information diffusion. In Proceedings of the 21st International Conference on World Wide Web. ACM, 519--528.
[48]
J. Leskovec, L. A. Adamic, and B. A. Huberman. 2007. The dynamics of viral marketing. ACM Trans. Web 1, 1 (2007), 5.
[49]
A. Anagnostopoulos, R. Kumar, and M. Mahdian. 2008. Influence and correlation in social networks. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 7--15.
[50]
E. Bakshy, B. Karrer, and L. A. Adamic. 2009. Social influence and the diffusion of user-created content. In Proceedings of the 10th ACM Conference on Electronic Commerce. ACM, 325--334.
[51]
C. F. Manski. 1993. Identification of endogenous social effects: The reflection problem. Rev. Econ. Studies 60, 3 (1993), 531--542.
[52]
S. Aral, L. Muchnik, and A. Sundararajan. 2009. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Natl. Acad. Sci. U.S.A. 106, 51 (2009), 21544--21549.
[53]
E. Adar, J. Teevan, and S. T. Dumais. 2009. Resonance on the web: Web dynamics and revisitation patterns. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1381--1390.
[54]
L. A. Adamic and E. Adar. 2003. Friends and neighbors on the web. Soc. Netw. 25, 3 (2003), 211--230.
[55]
A. Marin. 2004. Are respondents more likely to list alters with certain characteristics?: Implications for name generator data. Soc. Netw. 26, 4 (2004), 289--307.
[56]
G. Kossinets and D. J. Watts. 2009. Origins of homophily in an evolving social network. Amer. J. Sociol. 115, 2 (2009), 405--450.
[57]
M. S. Granovetter. 1977. The strength of weak ties. In Soc. Netw. 347--367.
[58]
D. Z. Levin and R. Cross. 2004. The strength of weak ties you can trust: The mediating role of trust in effective knowledge transfer. Manage. Sci. 50, 11 (2004), 1477--1490.
[59]
B. K. Chae. 2015. Insights from hashtag# supplychain and Twitter analytics: Considering Twitter and Twitter data for supply chain practice and research. Int. J. Prod. Econ. 165, 247--259.
[60]
J. Song, S. Lee, and J. Kim. 2011. Spam filtering in Twitter using sender-receiver relationship. In Proceedings of the International Workshop on Recent Advances in Intrusion Detection. Springer, Berlin, 301--317.
[61]
H. Kwak, C. Lee, H. Park, and S. Moon. 2010. What is Twitter, a social network or a news media? In Proceedings of the 19th International Conference on World Wide Web. ACM, 591--600.
[62]
M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi. 2010. Measuring user influence in Twitter: The million follower fallacy. In Proceedings of the International AAAI Conference on Web and Social Media (ICWSM’10). 10--17.
[63]
R. Aswani, S. P. Ghrera, A. K. Kar, and S. Chandra. 2017. Identifying buzz in social media: A hybrid approach using artificial bee colony and k-nearest neighbors for outlier detection. Soc. Netw. Anal. Min. 7, 1 (2017), 38.
[64]
R. Aswani, A. K. Kar, S. Aggarwal, and P. V. Ilavarsan. 2017. Exploring content virality in Facebook: A semantic-based approach. In Proceedings of the Conference on e-Business, e-Services, and e-Society. Springer, Cham, 209--220.
[65]
R. Aswani, S. P. Ghrera, S. Chandra, and A. K. Kar. 2017. Identifying popular online news: An approach using chaotic cuckoo search algorithm. In Proceedings of the International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS’17). IEEE.
[66]
S. Stemler. 2001. An overview of content analysis. Pract. Assess. Res. Eval. 7, 17 (2001), 137--146.
[67]
P. L. Hsu. 1938. Contribution to the theory of Student's t-test as applied to the problem of two samples. Statistical Research Memoirs. Cambridge University Press.
[68]
A. K. Rathore, A. K. Kar, and P. V. Ilavarasan. 2017. Social media analytics: Literature review and directions for future research. Decis. Anal. 14, 4 (2017), 229--249.
[69]
A. K. Kar. 2016. Bio inspired computing--A review of algorithms and scope of applications. Expert Syst. Appl. 59, 20--32.
[70]
A. Chakraborty and A. K. Kar. 2017. Swarm intelligence: A review of algorithms. In Nature-Inspired Computing and Optimization. Springer, Cham, 475--494.
[71]
R. Tang, S. Fong, X. S. Yang, and S. Deb. 2012. Integrating nature-inspired optimization algorithms to K-means clustering. In Proceedings of the 7th International Conference on Digital Information Management (ICDIM’12). IEEE, 116--123.
[72]
X. S. Yang. 2010. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2, 2 (2010), 78--84.
[73]
X. S. Yang. 2010. A new metaheuristic bat-inspired algorithm. In Proceedings of the Conference on Nature Inspired Cooperative Strategies for Optimization (NICSO’10). Springer, Berlin, 65--74.
[74]
A. H. Gandomi, X. S. Yang, and A. H. Alavi. 2013. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 29, 1 (2013), 17--35.
[75]
K. Zhai, J. Boyd-Graber, N. Asadi, and M. L. Alkhouja. 2012. Mr. LDA: A flexible large-scale topic modeling package using variational inference in mapreduce. In Proceedings of the 21st International Conference on World Wide Web. ACM, 879--888.
[76]
A. Dobele, A. Lindgreen, M. Beverland, J. Vanhamme, and R. Van Wijk. 2007. Why pass on viral messages? Because they connect emotionally. Bus. Horiz. 50, 4 (2007), 291--304.
[77]
J. L. Aaker. 1997. Dimensions of brand personality. J. Market. Res. 347--356.
[78]
N. Dalkey and O. Helmer. 1963. An experimental application of the Delphi method to the use of experts. Management Science 9, 3 (1963), 458--467.
[79]
S. Mirjalili, S. M. Mirjalili, and A. Lewis. 2014. Grey wolf optimizer. Adv. Eng. Software 69, 46--61.
[80]
R. Aswani, S. P. Ghrera, and S. Chandra. 2016. A novel approach to outlier detection using modified grey wolf optimization and k-nearest-neighbors algorithm. Indian J. Sci. Technol. 9, 44.
[81]
D. Karaboga and B. Basturk. 2007. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Global Optimiz. 39, 3 (2007), 459--471.
[82]
D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga. 2014. A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artific. Intell. Rev. 42, 1 (2014), 21--57.
[83]
S. Mirjalili. 2015. How effective is the grey wolf optimizer in training multi-layer perceptrons. Appl. Intell. 43, 1 (2015), 150--161.
[84]
J. L. Gastwirth, Y. R. Gel, and W. Miao. 2009. The impact of Levene's test of equality of variances on statistical theory and practice. Stat. Sci. 24, 3 (2009), 343--360.
[85]
A. M. Kaplan and M. Haenlein. 2010. Users of the world, unite! The challenges and opportunities of social media. Bus. Horiz.s 53, 1 (2010), 59--68.
[86]
M. Del Vicario, A. Bessi, F. Zollo, F. Petroni, A. Scala, G. Caldarelli, H. E. Stanley, and W. Quattrociocchi. 2016. The spreading of misinformation online. Proc. Natl. Acad. Sci. U.S.A. 113, 3 (2016), 554--559.
[87]
N. A. Karlova and K. E. Fisher. 2013. A social diffusion model of misinformation and disinformation for understanding human information behavior. Info. Res. 18, 1 (2013), 573.
[88]
A. J. Mills. 2012. Virality in social media: The SPIN framework. J. Public Affairs 12, 2 (2012), 162--169.
[89]
A. Arora, S. Bansal, C. Kandpal, R. Aswani, and Y. Dwivedi. 2019. Measuring social media influencer index-insights from Facebook, Twitter, and Instagram. J. Retail. Consum. Serv. 49 (2019), 86--101.
[90]
P. Grover, A. K. Kar, and G. Davies. 2018. “Technology enabled health”—Insights from Twitter analytics with a socio-technical perspective. Int. J. Info. Manage. 43 (2018), 85--97.
[91]
N. Joseph, A. K. Kar, P. V. Ilavarasan, and S. Ganesh. 2017. Review of discussions on internet of things (IoT): Insights from Twitter analytics. J. Global Info. Manage. 25, 2 (2017), 38--51.
[92]
C. Shirky. 2011. The political power of social media: Technology, the public sphere, and political change. Foreign Affairs 90, 1 (2011), 28--41.

Cited By

View all
  • (2024)Why People Accept Mental Health-Related Misinformation: Role of Social Media Metrics in Users’ Information ProcessingSocial Science Computer Review10.1177/08944393241287791Online publication date: 25-Sep-2024
  • (2024)Truths and Tales: Understanding Online Fake News Networks in South KoreaJournal of Asian and African Studies10.1177/00219096231224672Online publication date: 29-Jan-2024
  • (2024)An ensemble deep learning model for fast classification of Twitter spamInformation & Management10.1016/j.im.2024.10405261:8(104052)Online publication date: Dec-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Data and Information Quality
Journal of Data and Information Quality  Volume 12, Issue 1
ON THE HORIZON, CHALLENGE PAPER, REGULAR PAPERS, and EXPERIENCE PAPER
March 2020
110 pages
ISSN:1936-1955
EISSN:1936-1963
DOI:10.1145/3372130
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 November 2019
Accepted: 01 June 2019
Revised: 01 June 2019
Received: 01 April 2018
Published in JDIQ Volume 12, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Misinformation
  2. Twitter analytics
  3. information propagation
  4. network science
  5. social media

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)175
  • Downloads (Last 6 weeks)21
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Why People Accept Mental Health-Related Misinformation: Role of Social Media Metrics in Users’ Information ProcessingSocial Science Computer Review10.1177/08944393241287791Online publication date: 25-Sep-2024
  • (2024)Truths and Tales: Understanding Online Fake News Networks in South KoreaJournal of Asian and African Studies10.1177/00219096231224672Online publication date: 29-Jan-2024
  • (2024)An ensemble deep learning model for fast classification of Twitter spamInformation & Management10.1016/j.im.2024.10405261:8(104052)Online publication date: Dec-2024
  • (2024)Exploring Latent Characteristics of Fake Reviews and Their Intermediary Role in Persuading Buying DecisionsInformation Systems Frontiers10.1007/s10796-023-10401-w26:3(1091-1108)Online publication date: 1-Jun-2024
  • (2024)Digital Resilience in Dealing with Misinformation on Social Media during COVID-19Information Systems Frontiers10.1007/s10796-022-10347-526:2(477-499)Online publication date: 1-Apr-2024
  • (2024)Sociotechnical governance of misinformation: An Annual Review of Information Science and Technology (ARIST) paperJournal of the Association for Information Science and Technology10.1002/asi.24953Online publication date: 3-Oct-2024
  • (2023)Lessons Learned From Interdisciplinary Efforts to Combat COVID-19 Misinformation: Development of Agile Integrative Methods From Behavioral Science, Data Science, and Implementation ScienceJMIR Infodemiology10.2196/401563(e40156)Online publication date: 3-Feb-2023
  • (2023)Advancements in Rumor Detection Research Based on Bibliometrics and S-curve Technology Evolution TheorySage Open10.1177/2158244023121772413:4Online publication date: 23-Dec-2023
  • (2023)Exploring Automatic Hate Speech Detection on Social Media: A Focus on Content-Based AnalysisSage Open10.1177/2158244023118131113:2Online publication date: 17-Jun-2023
  • (2023)A computational linguistic analysis of the anatomy of production, consumption, and diffusion of misinformation and authentic information in social media: The case of the COVID-19 pandemicDiscourse & Communication10.1177/1750481323120794818:2(159-215)Online publication date: 12-Dec-2023
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media