Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/384101.384120acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

On computer-assisted classification of coupled integrable equations

Published: 01 July 2001 Publication History

Abstract

We show how the triangularization method of the second author can be successfully applied to the problem of classification of homogeneous coupled integrable equations. The classifications rely on the recent algorithm developed by the first author that requires solving 17 systems of polynomial equations. We show that these systems can be completely resolved in the case of coupled Korteweg-de Vries, Sawada-Kotera and Kaup-Kupershmidt—type equations.

References

[1]
P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. J. Symb. Comp., 28:105-124, 1999.]]
[2]
P. Aubry and M. Moreno Mmza. Triangular sets for solving polynomial systems: A comparative implementation of four methods, d. Symb. Comp., 28(1-2):125-154, 1999.]]
[3]
F. Boulier and F. Lemaire. Computing canonical representatives of regular differential ideals. In proceedings of ISSAC 2000, pages 37-46, 2000.]]
[4]
F. Boulier, F. Lemaire, and M. Moreno Maza. PARDI! Technical Report LIFL 2001-01, Universit Lille I, LIFL, 2001. In proceedings of ISSAC 2001.]]
[5]
D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms. Springer-Verlag, 1992.]]
[6]
J.-C. Faugre. GB. calfor.lip6.fr//pub/softwares/GB.]]
[7]
J.-C. Faugre. Rsolution des systmes d'quations algbriques. PhD thesis, Universit de Paris-VI, 1994.]]
[8]
J.-C. Faugre. A new efficient algorithm for computing GrSbner bases. In Proceedings of MEGA '98, 1998.]]
[9]
A.S. Fokas. Symmetries and integrability. Stud. Appl. Math., 77:253-299, 1987.]]
[10]
M.V. Foursov. On integrable evolution equations in commutative and noneommutative variables. PhD thesis, University of Minnesota, Minneapolis, 1999.]]
[11]
M.V. Foursov. Complete classification of coupled integrable equations. I: Example of the KdV-type systems. Technical Report LIFL 2000-09, Universit Lille-I, LIFL, 2000. Submitted to Nonlinearity.]]
[12]
M.V. Foursov. On integrable coupled KdV-type systems. Inverse Problems, 16:259-274, 2000.]]
[13]
V.P. Gerdt and A.Y. Zharkov. Computer classification of integrable coupled KdV-like systems. J. Symb. Comp., 10:203-207, 1990.]]
[14]
M. Kalkbrener. Three contributions to elimination theory. PhD thesis, Johannes Kepler University, Linz, 1991.]]
[15]
M. Kalkbrener. A generalized Euclidean algorithm for computing triangular representations of algebraic varieties. J. Symb. Comp., 15:143-167, 1993.]]
[16]
D.J. Kaup. On the inverse scattering problem for cubic eigenvalue problems of the class Cx + 6qc + 6rc =Ac. Stud. Appl. Math., 62:189-216, 1980.]]
[17]
D. Lazard. A new method for solving algebraic systems of positive dimension. Diser. App. Math, 33:147-160, 1991.]]
[18]
A.V. Mikhailov, A.B. Shabat, and V.V. Sokolov. The symmetry approach to classification of integrable equations. In "What is integrability?", pages 115-184. Springer-Verlag, 1991.]]
[19]
A.V. Mikhailov, A.B. Shabat, and R.I. Yamilov. The symmetry approach to the classification of nonlinear equations. Complete lists of integrable systems. Russ. Math. Surveys, 42:t-63, 1987.]]
[20]
M. Moreno Maza. On triangular decompositions of algebraic varieties. NAG Tech. Report, 1999. Presented at MEGA 2000.]]
[21]
M. Musette and C. Verhoeven. Nonlinear superposition formula for the Kaup-Kupershmidt partial differential equation. Physiea D, 144:211-220, 2000.]]
[22]
P. A. Broadbery, S. S. Dooley, P. Iglio, S. C. Morisson, J. M. Steinbach, R. S. Sutor, and S. M. Watt. AXIOM Library Compiler User Guide. NAG, The Numerical Algorithms Group Limited, Oxford, United Kingdom, 1st edition, November 1994. AXIOM is a registred trade mark of NAG.]]
[23]
F. Ollivier. Le problme de l'identifiabilitd structurelle globale : approche thdorique, mgthodes effeetives et bornes de complexitC PhD thesis, tcole Polytechnique, 1990.]]
[24]
P.J. Olver. Applications of Lie groups to differential equations. Springer-Verlag, Second edition, 1993.]]
[25]
P.J. Olver and V.V. Sokolov. Integrable evolution equations on associative algebras. Comm. Math. Phys., 193:245-268, 1998.]]
[26]
P.J. Olver and V.V. Sokolov. Non-abelian integrable systems of the derivative nonlinear SchrSdinger type. Inverse Problems, 14:L5-L8, 1998.]]
[27]
R. Palais. The symmetries of solitons. Bull. Amer. Math. Soc., 34:339-403, 1997.]]
[28]
C. Rogers and S. Carillo. On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kupershmidt hierarchies. Phys. Scr., 36:865-869, 1987.]]
[29]
J.A. Sanders and P.J. Wang. On the integrability of homogeneous scalar evolution equations. J. Diff. Eq., 147:410-434, 1998.]]
[30]
K. Sawada and T. Kotera. A method for finding N-soliton solutions of the KdV equation and of KdV-like equations. Prog. Theor. Phys., 51:1355-1367, 1974.]]
[31]
S.I. Svinolupov. On the analogues of the Burgers equation. Phys. Lett. A, 135:32-36, 1989.]]
[32]
W. T. Wu. A zero structure theorem for polynomial equations solving. MM Research Preprints, 1:2-12, 1987.]]
[33]
H.Q. Zhou, L.J. Jiang, and Q. Jiang. Connection between infinite conservation laws of a coupled Zhiber-Shabat-Mikhailov equation and a coupled Kaup-Kupershmidt equation. Phys. Lett. A, 143:288-292, 1990.]]

Cited By

View all
  • (2003)Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial SystemsSymbolic and Numerical Scientific Computation10.1007/3-540-45084-X_1(1-39)Online publication date: 24-Jun-2003
  • (2002)On Computer-assisted Classification of Coupled Integrable EquationsJournal of Symbolic Computation10.1006/jsco.2002.052733:5(647-660)Online publication date: 1-May-2002
  • (2001)Notes on triangular sets and triangulation-decomposition algorithms IProceedings of the 2nd international conference on Symbolic and numerical scientific computation10.5555/1763852.1763854(1-39)Online publication date: 12-Sep-2001

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation
July 2001
345 pages
ISBN:1581134177
DOI:10.1145/384101
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2001

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. generalized symmetries
  2. integrable PDEs
  3. mathematical physics
  4. polynomial systems
  5. triangular decompositions

Qualifiers

  • Article

Conference

ISSAC01
Sponsor:

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2003)Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial SystemsSymbolic and Numerical Scientific Computation10.1007/3-540-45084-X_1(1-39)Online publication date: 24-Jun-2003
  • (2002)On Computer-assisted Classification of Coupled Integrable EquationsJournal of Symbolic Computation10.1006/jsco.2002.052733:5(647-660)Online publication date: 1-May-2002
  • (2001)Notes on triangular sets and triangulation-decomposition algorithms IProceedings of the 2nd international conference on Symbolic and numerical scientific computation10.5555/1763852.1763854(1-39)Online publication date: 12-Sep-2001

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media