Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Twin-Width IV: Ordered Graphs and Matrices

Published: 13 June 2024 Publication History

Abstract

We establish a list of characterizations of bounded twin-width for hereditary classes of totally ordered graphs: as classes of at most exponential growth studied in enumerative combinatorics, as monadically NIP classes studied in model theory, as classes that do not transduce the class of all graphs studied in finite model theory, and as classes for which model checking first-order logic is fixed-parameter tractable studied in algorithmic graph theory.
This has several consequences. First, it allows us to show that every hereditary class of ordered graphs either has at most exponential growth, or has at least factorial growth. This settles a question first asked by Balogh et al. [5] on the growth of hereditary classes of ordered graphs, generalizing the Stanley-Wilf conjecture/Marcus-Tardos theorem. Second, it gives a fixed-parameter approximation algorithm for twin-width on ordered graphs. Third, it yields a full classification of fixed-parameter tractable first-order model checking on hereditary classes of ordered binary structures. Fourth, it provides a model-theoretic characterization of classes with bounded twin-width. Finally, it settles the small conjecture [8] in the case of ordered graphs.

References

[1]
Hans Adler and Isolde Adler. 2014. Interpreting nowhere dense graph classes as a classical notion of model theory. European Journal of Combinatorics 36 (2014), 322–330.
[2]
Stefan Arnborg, Jens Lagergren, and Detlef Seese. 1988. Problems easy for tree-decomposable graphs (extended abstract). In Automata, Languages and Programming, Timo Lepistö and Arto Salomaa (Eds.). Springer Berlin, Berlin, 38–51.
[3]
John T. Baldwin and Saharon Shelah. 1985. Second-order quantifiers and the complexity of theories. Notre Dame Journal of Formal Logic 26, 3 (1985), 229–303.
[4]
József Balogh, Béla Bollobás, and Robert Morris. 2006. Hereditary properties of ordered graphs. In Topics in Discrete Mathematics. Springer, 179–213.
[5]
József Balogh, Béla Bollobás, and Robert Morris. 2006. Hereditary properties of partitions, ordered graphs and ordered hypergraphs. Eur. J. Comb. 27, 8 (2006), 1263–1281. DOI:
[6]
Manuel Bodirsky. 2015. Ramsey Classes: Examples and Constructions. Cambridge University Press, 1–48. DOI:
[7]
Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. 2020. Twin-width III: Max independent set and coloring. CoRR abs/2007.14161 (2020). arxiv:2007.14161https://arxiv.org/abs/2007.14161
[8]
Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. 2021. Twin-width II: Small classes. In 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA’21). 1977–1996. DOI:
[9]
Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. 2020. Twin-width I: Tractable FO model checking. In 61st IEEE Annual Symposium on Foundations of Computer Science (FOCS 2020). IEEE, 601–612. DOI:
[10]
Simone Bova and Barnaby Martin. 2015. First-order queries on finite Abelian groups. In 24th EACSL Annual Conference on Computer Science Logic (CSL’15). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[11]
Josef Cibulka and Jan Kyncl. 2016. Füredi-Hajnal limits are typically subexponential. CoRR abs/1607.07491 (2016). arxiv:1607.07491http://arxiv.org/abs/1607.07491
[12]
Bruno Courcelle. 1990. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation 85, 1 (1990), 12–75. DOI:
[13]
Bruno Courcelle. 1994. Monadic second-order definable graph transductions: A survey. Theoretical Computer Science 126, 1 (1994), 53–75. DOI:
[14]
Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. 2000. Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33, 2 (2000), 125–150. DOI:
[15]
Bruno Courcelle and Sang-il Oum. 2007. Vertex-minors, monadic second-order logic, and a conjecture by Seese. Journal of Combinatorial Theory, Series B 97, 1 (2007), 91–126. DOI:
[16]
Anuj Dawar, Martin Grohe, and Stephan Kreutzer. 2007. Locally excluding a minor. In 22nd Annual IEEE Symposium on Logic in Computer Science (LICS’07). 270–279. DOI:
[17]
Guoli Ding, Bogdan Oporowski, James G. Oxley, and Dirk Vertigan. 1996. Unavoidable minors of large 3-connected binary matroids. J. Comb. Theory, Ser. B 66, 2 (1996), 334–360. DOI:
[18]
Rodney G. Downey, Michael R. Fellows, and Udayan Taylor. 1996. The parameterized complexity of relational database queries and an improved characterization of W[1]. In 1st Conference of the Centre for Discrete Mathematics and Theoretical Computer Science (DMTCS 1996)). Springer-Verlag, Singapore, 194–213.
[19]
Zdenek Dvorák, Daniel Král, and Robin Thomas. 2013. Testing first-order properties for subclasses of sparse graphs. J. ACM 60, 5 (2013), 36:1–36:24. DOI:
[20]
J. Flum and M. Grohe. 2006. Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series). Springer-Verlag, Berlin.
[21]
Markus Frick and Martin Grohe. 2001. Deciding first-order properties of locally tree-decomposable structures. J. ACM 48, 6 (2001), 1184–1206. DOI:
[22]
Jakub Gajarský, Petr Hlinený, Daniel Lokshtanov, Jan Obdrzálek, Sebastian Ordyniak, M. S. Ramanujan, and Saket Saurabh. 2015. FO model checking on posets of bounded width. In IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS 2015), 2015. 963–974. DOI:
[23]
Jakub Gajarský, Petr Hlinený, Daniel Lokshtanov, Jan Obdrzálek, and M. S. Ramanujan. 2018. A new perspective on FO model checking of dense graph classes. CoRR abs/1805.01823 (2018). arxiv:1805.01823http://arxiv.org/abs/1805.01823
[24]
Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Daniel Lokshtanov, and M. S. Ramanujan. 2016. A new perspective on FO model checking of dense graph classes. In 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’16). 176–184. DOI:
[25]
Jakub Gajarský and Daniel Kráľ. 2018. Recovering sparse graphs. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS’18). Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
[26]
Jakub Gajarský, Stephan Kreutzer, Jaroslav Nesetril, Patrice Ossona de Mendez, Michal Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. 2018. First-order interpretations of bounded expansion classes. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). 126:1–126:14. DOI:
[27]
Sylvain Gravier, Frédéric Maffray, Jérôme Renault, and Nicolas Trotignon. 2004. Ramsey-type results on singletons, co-singletons and monotone sequences in large collections of sets. Eur. J. Comb. 25, 5 (2004), 719–734. DOI:
[28]
Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. 2017. Deciding first-order properties of nowhere dense graphs. J. ACM 64, 3 (2017), 17:1–17:32. DOI:
[29]
Benjamin Gunby and Dömötör Pálvölgyi. 2019. Asymptotics of pattern avoidance in the Klazar set partition and permutation-tuple settings. Eur. J. Comb. 82 (2019). DOI:
[30]
Petr Hliněnỳ, Filip Pokrỳvka, and Bodhayan Roy. 2019. FO model checking on geometric graphs. Computational Geometry 78 (2019), 1–19.
[31]
Russell Impagliazzo and Ramamohan Paturi. 2001. On the complexity of k-SAT. J. Comput. Syst. Sci. 62, 2 (2001), 367–375. DOI:
[32]
Martin Klazar. 2000. The Füredi-Hajnal conjecture implies the Stanley-Wilf conjecture. In Formal Power Series and Algebraic Combinatorics. Springer, 250–255.
[33]
Martin Klazar. 2008. On growth rates of permutations, set partitions, ordered graphs and other objects. Electron. J. Comb. 15, 1 (2008). http://www.combinatorics.org/Volume_15/Abstracts/v15i1r75.html
[34]
Stephan Kreutzer. 2012. On the parameterized intractability of monadic second-order logic. Logical Methods in Computer Science 8 (032012). DOI:
[35]
Stephan Kreutzer and Siamak Tazari. 2010. Lower bounds for the complexity of monadic second-order logic. In 25th Annual IEEE Symposium on Logic in Computer Science (LICS 2010). IEEE Computer Society, 189–198. DOI:
[36]
Adam Marcus and Gábor Tardos. 2004. Excluded permutation matrices and the Stanley-Wilf conjecture. J. Comb. Theory, Ser. A 107, 1 (2004), 153–160. DOI:
[37]
Jaroslav Nešetřil and Patrice Ossona de Mendez. 2011. On nowhere dense graphs. European Journal of Combinatorics 32, 4 (2011), 600–617. DOI:
[38]
Frank P. Ramsey. 1930. On a problem of formal logic. In Proc. London Math. Soc. series 2 (264-286), Vol. 30.
[39]
D. Seese. 1991. The structure of the models of decidable monadic theories of graphs. Annals of Pure and Applied Logic 53, 2 (1991), 169–195. DOI:
[40]
Detlef Seese. 1995. Linear time computable problems and logical descriptions. Electronic Notes in Theoretical Computer Science 2 (1995), 246–259. DOI:SEGRAGRA 1995, Joint COMPUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and Computation.
[41]
Detlef Seese. 1996. Linear time computable problems and first-order descriptions. Mathematical Structures in Computer Science 6, 6 (1996), 505–526.
[42]
Saharon Shelah. 1971. Stability, the F.C.P., and superstability; Model theoretic properties of formulas in first order theory. Annals of Mathematical Logic 3, 3 (1971), 271. DOI:
[43]
Saharon Shelah. 1986. Monadic Logic: Hanf Numbers. In: Around Classification Theory of Models. Lecture Notes in Mathematics, Vol. 1182. Springer, Berlin.
[44]
Pierre Simon. 2021. A Note on Stability and NIP in One Variable. (2021). arxiv:math.LO/2103.15799

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 71, Issue 3
June 2024
323 pages
EISSN:1557-735X
DOI:10.1145/3613558
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 June 2024
Online AM: 11 March 2024
Accepted: 01 March 2024
Revised: 21 February 2024
Received: 17 May 2022
Published in JACM Volume 71, Issue 3

Check for updates

Author Tags

  1. Twin-width
  2. ordered graphs
  3. matrices
  4. finite model theory
  5. growth jump
  6. parameterized complexity

Qualifiers

  • Research-article

Funding Sources

  • European Research Council (ERC)
  • European Union’s Horizon 2020
  • French National Research Agency

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 119
    Total Downloads
  • Downloads (Last 12 months)119
  • Downloads (Last 6 weeks)21
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media