Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
survey

From Conventional to Programmable Matter Systems: A Review of Design, Materials, and Technologies

Published: 26 April 2024 Publication History
  • Get Citation Alerts
  • Abstract

    Programmable matter represents a system of elements whose interactions can be programmed for a certain behavior to emerge (e.g., color, shape) upon suitable commands (e.g., instruction, stimuli) by altering its physical characteristics. Even though its appellation may refer to a morphable physical material, programmable matter has been represented through several approaches from different perspectives (e.g., robots, smart materials) that seek the same objective: controllable behavior such as smart shape alteration. Researchers, engineers, and artists have expressed interest in the development of smart modeling clay as a novel alternative to conventional matter and classical means of prototyping. Henceforth, users will be able to do/undo/redo forms based on computed data (CAD) or interactions (sensors), which will help them unlock more features and increase the usefulness of their products. However, with such a promising technology, many challenges need to be addressed, as programmable matter relies on energy consumption, data transmission, stimuli control, and shape formation mechanisms. Furthermore, numerous devices and technologies are created under the name of programmable matter, which may pose ambiguity to the control strategies. In this study, we determine the basic operations required to form a shape, then review different realizations using the shape shifting ability of programmable matter and their fitting classifications, and finally discuss potential challenges.

    References

    [1]
    D. M. Addington, D. Schodek, and D. L. Schodek. 2007. Smart materials and technologies for the architecture and design professions. In Smart Materials and Technologies for the Architecture and Design Professions. Elsevier.
    [2]
    M. Bengisu and M. Ferrara. 2018. Materials that move. In Materials That Move. Springer International Publishing, 5–38.
    [3]
    B. Buchi, H. Mabed, F. Lassabe, J. Gaber, and W. Abdou. 2021. Translation based Self Reconfiguration Algorithm for 6-lattice Modular Robots. In Proceedings of the 2021 20th International Symposium on Parallel and Distributed Computing (ISPDC ’21). 49–56. DOI:
    [4]
    A Castano, W. M. Shen, and P. Will. 2000. CONRO: Towards deployable robots with inter-robots metamorphic capabilities autonomous robots. Autonomous Robots 8 (2000), 309–333. DOI:
    [5]
    A. A. Chafik, J. Gaber, S. Tayane, and M. Ennaji. 2021. Shape-Memory Programmable Device. Retrieved April 1, 2024 from https://patents.google.com/patent/WO2023066999A1/en?oq=WO2023066999
    [6]
    Ahmed Amine Chafik, Jaafar Gaber, Souad Tayane, and Mohamed Ennaji. 2022. Behavioral modeling of knitted shape memory membrane. In Proceedings of the 2022 XXVIII International Conference on Information, Communication, and Automation Technologies (ICAT ’22). 1–6. DOI:
    [7]
    M. Coelho, H. Ishii, and P. Maes. 2008. Surflex: A programmable surface for the design of tangible interfaces. In CHI ’08 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’08). ACM, 3429–3463.
    [8]
    D. Correa, A. Papadopoulou, C. Guberan, N. Jhaveri, S. Reichert, A. Menges, and S. Tibbits. 2015. 3D-printed wood: Programming hygroscopic material transformations. 3D Printing and Additive Manufacturing 2, 3 (2015), 106–116.
    [9]
    J. Daudelin, G. Jing, T. Tosun, M. Yim, H. Kress-Gazit, and M. Campbell. 2018. An Integrated System for Perception-Driven Autonomy with Modular Robots. Retrieved April 1, 2024 from DOI:
    [10]
    J. Davey, N. Kwok, and M. Yim. 2012. Emulating self-reconfigurable robots—Design of the SMORES system. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 4464–4473. DOI:
    [11]
    M. Ennaji, S. Tayane, and J. Gaber. 2019. Modelling and simulation of the behavior of a shape memory membrane for programmable matter 4D prototyping systems research and. Behavioral Science 36 (2019), 835–879.
    [12]
    M. Ennaji, S. Tayane, J. Gaber, A. A. Aziz, A. Mouchtachi, and J. Saadi. 2018. Membrane Flexible Composite à Mémoire de Forme. Retrieved April 1, 2024 from http://patent.ompic.ma/publication-server/html-document?PN=MA44424%20MA%2044424&iDocId=16035
    [13]
    L. Esther, A. Piselli, J. Faucheu, D. Delafosse, and B. del Curto. 2014. Smart materials: Development of new sensory experiences through stimuli responsive materials. In Proceedings of the 5th STS Italia Conference A Matter of Design: Making Society through Science and Technology. 10.
    [14]
    S. Follmer, D. Leithinger, A. Olwal, A. Hogge, and H. Ishii. 2013. inFORM: Dynamic physical affordances and constraints through shape and object actuation.In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (UIST ’13). ACM, 417–443.
    [15]
    M. Frey and Snoil. n.d. A Physical Display Based on Ferrofluid. Retrieved April 1, 2024 from https://web.archive.org/web/20180226210841http://www.freymartin.de/en/projects/snoil/
    [16]
    Q. Ge, A. H. Sakhaei, H. Lee, C. K. Dunn, N. Fang, and M. L. Dunn. 2016. Multimaterial 4D printing with tailorable shape memory polymers. Scientific Reports 6 (2016), 31110.
    [17]
    S. C. Goldstein, J. Campbell, and T. C. Mowry. 2005. Programmable matter. Computer 38 (2005), 99–101. DOI:
    [18]
    M. Goulthorpe. 2007. Aegis Hyposurface. Retrieved April 1, 2024 from https://mcburry.net/aegis-hyposurface/
    [19]
    G. Grassi, B. Sparrman, I. Paoletti, and S. Tibbits. 2022. 4D soft material systems. In Proceedings of the International Conference on Computational Design and Robotic Fabrication. 201–210.
    [20]
    E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, and R. J. Wood. 2010. Programmable matter by folding. Proceedings of the National Academy of Sciences of the United States of America107, 28 (2010), 12441–12446.
    [21]
    J. L. Huang, Z. Zhakypov, H. Sonar, and J. Paik. 2018. A reconfigurable interactive interface for controlling robotic origami in virtual environments. International Journal of Robotics Research 37 (2018), 629–676.
    [22]
    H. Iwata, H. Yano, F. Nakaizumi, and R. Kawamura. 2001. Project FEELEX: Adding haptic surface to graphics. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01). ACM, 469–476.
    [23]
    H. Iwata, H. Yano, and N. Ono. 2005. Volflex. In Proceedings of ACM SIGGRAPH 2005 Emerging Technologies (SIGGRAPH ’05). ACM, 31.
    [24]
    M. W. Jorgensen, E. Ostergaard, and H. H. Lund. 2004. Modular ATRON: Modules for a self-reconfigurable robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’04). 2068–2073.
    [25]
    V. L. Kalyani. 2015. Claytronics—An unimaginable shape shifting future tech. Journal of Management Engineering and Information Technology (JMEIT’15) 2, 4 (2015), 21–29.
    [26]
    Y. Kawaguchi. 2008. Gemotion Screen: A Generative, Emotional, Interactive 3D Display. Retrieved April 1, 2024 from https://api.semanticscholar.org/CorpusID:111621852
    [27]
    E. F. Keller. 2011. Towards a science of informed matter. Studies in History and Philosophy of SciencePart C:Studies in History and Philosophy of Biological and Biomedical Sciences 42 (2011), 174–183. DOI:
    [28]
    D. Kirchner, S. Niemczyk, and K. Geihs. 2014. RoSHA: A multi-robot self-healing architecture. In RoboCup 2013: Robot World Cup XVII. Lecture Notes in Computer Science, Vol. 8371. Springer, 304–315. DOI:
    [29]
    A. Kochan. 2000. Rapid prototyping gains speed, volume and precision. Assembly Automation 20 (2000), 295–299. DOI:
    [30]
    S. Kodama and M. Takeno. 2001. Sound-responsive magnetic fluid display. In Proceedings of the IFIP TC13 International Conference on Human-Computer Interaction. 737–745.
    [31]
    J. Koh, K. Karunanayaka, and R. Nakatsu. 2013. Linetic: Technical, usability and aesthetic implications of a ferrofluid-based organic user interface. In Proceedings of the IFIP Conference on Human-Computer Interaction. 180–195.
    [32]
    H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and S. Murata. 2008. Distributed self-reconfiguration of M-TRAN III modular robotic system. International Journal of Robotics Research 27 (2008), 373–386.
    [33]
    D. Lakatos. 2012. AMPHORM: Form Giving through Gestural Interaction to Shape Changing Objects. Retrieved April 1, 2024 from https://dam-prod.media.mit.edu/x/files/thesis/2012/dlakatos-ms.pdf
    [34]
    R. Landauer. 2008. Information is physical. Physics Today 44 (2008), 23.
    [35]
    D. Leithinger and H. Ishii. 2010. Relief: A scalable actuated shape display. In Proceedings of the 4th International Conference on Tangible, Embedded, and Embodied Interaction (TEI ’10). ACM, 221–223.
    [36]
    J. Leng, H. Lu, Y. Liu, W. Huang, and S. Du. 2009. Shape-memory polymers—A class of novel smart materials. MRS Bulletin 34 (2009), 848–855.
    [37]
    Y. Liu and H. Hu. 2010. A review on auxetic structures and polymeric materials. Scientific Research and Essays 5, 10 (2010), 1052–1063. DOI:
    [38]
    P. S. Lobo, J. Almeida, and L. Guerreiro. 2015. Shape memory alloys behaviour: A review. Procedia Engineering 114 (2015), 776–783.
    [39]
    F. Luigi and B. Arturo. 2022. Smart materials. Materials 15, 18 (2022), 6307. DOI:
    [40]
    S. Malik, K. Muhammad, and Y. Waheed. 2009. Nanotechnology: A revolution in modern industry. Molecules 28, 2 (2009), 661. DOI:
    [41]
    R. Moeckel, C. Jaquier, K. Drapel, E. Dittrich, A. Upegui, and A. Ijspeert. 2006. YaMoR and Bluemove—An autonomous modular robot with Bluetooth interface for exploring adaptive locomotion. In Proceedings of the International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines.685–692. DOI:
    [42]
    S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji. 2002. M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatronics 7 (2002), 431–472. DOI:
    [43]
    K. Nakagaki, S. Follmer, and H. Ishii. 2015. LineFORM: Actuated curve interfaces for display, interaction, and constraint.In Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology (UIST ’15). ACM, 333–342.
    [44]
    K. Nakagaki, L. Vink, J. Counts, D. Windham, D. Leithinger, S. Follmer, and H. Ishii. 2016. Materiable: Rendering dynamic material properties in response to direct physical touch with shape changing interfaces.In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16). ACM, 2764–2772.
    [45]
    Y. Nakagawa, S. Yonekura, and Y. Kawaguchi. 2011. Super thin 3D form display for multimodal user experiences using vertically deformation of leaf spring and SMA. In Proceedings of the IEEE International Symposium on VR Innovation (ISVRI ’11). 63–69.
    [46]
    M. Nakashige, K. Hirota, and M. Hirose. 2004. Linear actuator for high-resolution tactile display. In Proceedings of the 13th International Workshop on Robot and Human Interactive Communication (RO-MAN ’04). 587–590.
    [47]
    M. Nakatani, H. Kajimoto, D. Sekighuchi, N. Kawakami, and S. Tachi. 2004. Pop Up! A novel technology of shape display of 3D objects. In Proceedings of ACM SIGGRAPH 2004 Emerging Technologies (SIGGRAPH ’04). ACM, 21.
    [48]
    M. Nakatani, H. Kajimoto, D. Sekiguchi, N. Kawakami, and S. Tachi. 2003. 3D form display with shape memory alloy.In Proceedings of the 13th International Conference on Artificial Reality and Telexistence.
    [49]
    M. Park and M. Yim. 2009. Distributed control and communication fault tolerance for the CKBot. In Proceedings of the 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots. 682–690.
    [50]
    A. Parkes and H. Ishii. 2010. Bosu: A physical programmable design tool for transformability with soft mechanics. In Proceedings of the 8th ACM Conference on Designing Interactive Systems (DIS ’10). ACM, 189–198.
    [51]
    B. Piranda and J. Bourgeois. 2018. Designing a quasi-spherical module for a huge modular robot to create programmable matter. Autonomous Robots 42 (2018), 1619–1652. DOI:
    [52]
    B. Piranda and J. Bourgeois. 2020. Datom: A deformable modular robot for building self-reconfigurable programmable matter. In Proceedings of the International Symposium on Distributed Autonomous Robotic Systems. DOI:
    [53]
    I. Poupyrev, T. Nashida, S. Maruyama, J. Rekimoto, and Y. Yamaji. 2004. Lumen: Interactive visual and shape display for calm computing. In Proceedings of ACM SIGGRAPH 2004 Emerging Technologies (SIGGRAPH ’04). ACM, 17.
    [54]
    J. W. Romanishin, K. Gilpin, S. Claici, and D. Rus. 2015. 3D M-Blocks: Self-reconfiguring robots capable of locomotion via pivoting in three dimensions.In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA ’15). 1925–1957. DOI:
    [55]
    P. Schoessler, D. Windham, D. Leithinger, S. Follmer, and H. Ishii. 2015. Kinetic Blocks: Actuated constructive assembly for interaction and display.In Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology (UIST ’15). ACM, 341–350.
    [56]
    A. F. Siu, E. J. Gonzalez, S. Yuan, J. Ginsberg, and S. Follmer. 2018. shapeShift: 2D spatial manipulation and self-actuation of tabletop shape displays for tangible and haptic interaction. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). ACM, 1–13.
    [57]
    A. Stanley, J. Gwilliam, and A. Okamura. 2013. Haptic jamming: A deformable geometry, variable stiffness tactile display using pneumatics and particle jamming. In Proceedings of the 2013 World Haptics Conference (WHC ’13).
    [58]
    R. Suzuki, J. Yamaoka, D. Leithinger, T. Yeh, M. D. Gross, Y. Kawahara, and Y. Kakehi. 2018. Dynablock: Dynamic 3D printing for instant and reconstructable shape formation. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (UIST ’18). 99–111.
    [59]
    F. Taher, J. Hardy, A. Karnik, C. Weichel, Y. Jansen, K. Hornbæk, and J. Alexander. 2015. Exploring interactions with physically dynamic bar charts.In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15). ACM, 3237–3283.
    [60]
    Y. Tahouni, I. P. S. Qamar, and S. Mueller. 2020. NURBSforms: A modular shape-changing interface for prototyping curved surfaces.In Proceedings of the 14th International Conference on Tangible, Embedded, and Embodied Interaction (TEI ’20). ACM, 403–412.
    [61]
    P. M. Taylor, A. Moser, and A. Creed. 1998. A sixty-four element tactile display using shape memory alloy wires. Displays 18 (1998), 163–171.
    [62]
    P. Thalamy, B. Piranda, F. Lassabe, and J. Bourgeois. 2020. Deterministic scaffold assembly by self-reconfiguring micro-robotic swarms. Swarm and Evolutionary Computation 58 (2020), 100722–100718.
    [63]
    T. Toffoli and N. Margolus. 1991. Programmable matter: Concepts and realization. Physica D: Nonlinear Phenomena 47, 1-2 (1991), 263–272.
    [64]
    Y. Tokuda, J. L. B. Moya, G. Memoli, T. Neate, D. R. Sahoo, S. Robinson, J. Pearson, M. Jones, and S. Subramanian. 2017. Programmable liquid matter: 2D shape deformation of highly conductive liquid metals in a dynamic electric field. In Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces (ISS ’17). ACM, 142–150.
    [65]
    M. T. Tolley, S. M. Felton, S. Miyashita, D. Aukes, D. Rus, and R. J. Wood. 2014. Self-folding origami: Shape memory composites activated by uniform heating. SmartMaterialsandStructure 23 (2014), 94006.
    [66]
    A. M. Vijaykumar. 2015. A Scalable and Low-Cost Interactive Shape-Changing Display. Master’s Thesis. University of Clemson. https://tigerprints.clemson.edu/all_theses/2498
    [67]
    A. Wakita and A. Nakano. 2012. Blob manipulation.In Proceedings of the 6th International Conference on Tangible, Embedded, and Embodied Interaction (TEI ’12). ACM, 299–302.
    [68]
    A. Wakita, A. Nakano, and N. Kobayashi. 2010. Programmable blobs: A rheologic interface for organic shape design. In Proceedings of the 5th International Conference on Tangible, Embedded, and Embodied Interaction (TEI ’10). ACM, 273–279.
    [69]
    A. Wakita, A. Nakano, and M. Ueno. 2011. SMAAD surface: A tangible interface for smart material aided architectural design circuit bending, breaking and mending.In Proceedings of the 16th International Conference on Computer-Aided Architectural Design Research in Asia. 355–364. DOI:
    [70]
    P. White, V. Zykov, J. C. Bongard, and H. Lipson. 2005. Three dimensional stochastic reconfiguration of modular robots. In Robotics: Science and Systems I, Sebastian Thrun, Gaurav S. Sukhatme, and Stefan Schaal (Eds.). MIT Press, 161–168. DOI:
    [71]
    P. J. White, K. Kopanski, and H. Lipson. 2004. Stochastic self-reconfigurable cellular robotics. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA ’04). DOI:
    [72]
    F. Witz, B. Buchi, H. Mabed, F. Lassabe, J. Gaber, and W. Abdou. 2022. Deep learning for the selection of the best modular robots self-reconfiguration algorithm. In Proceedings of the 2022 IEEE Symposium on Computers and Communications (ISCC ’22). 1–6. DOI:
    [73]
    L. Yao, R. Niiyama, J. Ou, S. Follmer, C. Della Silva, and H. Ishii. 2013. PneUI: Pneumatically actuated soft composite materials for shape changing interfaces.In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (UIST ’13). ACM, 13–22.
    [74]
    M. Yim, P. White, P. Michael, and J. Sastra. 2009. Modular self-reconfigurable robots. In Encyclopedia of Complexity and Systems Science. Springer, 5618–5631. DOI:
    [75]
    V. Zykov and H. Lipson. 2007. Experiment design for stochastic three-dimensional reconfiguration of modular robots. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Self-Reconfigurable RoboticsWorkshop.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Computing Surveys
    ACM Computing Surveys  Volume 56, Issue 8
    August 2024
    963 pages
    ISSN:0360-0300
    EISSN:1557-7341
    DOI:10.1145/3613627
    • Editors:
    • David Atienza,
    • Michela Milano
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 April 2024
    Online AM: 26 March 2024
    Accepted: 10 March 2024
    Revised: 25 February 2024
    Received: 10 May 2022
    Published in CSUR Volume 56, Issue 8

    Check for updates

    Author Tags

    1. Programmable matter
    2. smart materials
    3. reconfigurable robots
    4. kinetic interface
    5. shape-changing
    6. prototyping
    7. haptics

    Qualifiers

    • Survey

    Funding Sources

    • EIPHI Graduate School

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 211
      Total Downloads
    • Downloads (Last 12 months)211
    • Downloads (Last 6 weeks)57
    Reflects downloads up to 26 Jul 2024

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media