Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2462356.2462391acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

Parameterized complexity of discrete morse theory

Published: 17 June 2013 Publication History

Abstract

Optimal Morse matchings reveal essential structures of cell complexes which lead to powerful tools to study discrete geometrical objects, in particular discrete 3-manifolds. However, such matchings are known to be NP-hard to compute on 3-manifolds, through a reduction to the erasability problem. Here, we refine the study of the complexity of problems related to discrete Morse theory in terms of parameterized complexity. On the one hand we prove that the erasability problem is W[P]-complete on the natural parameter. On the other hand we propose an algorithm for computing optimal Morse matchings on triangulations of 3-manifolds which is fixed-parameter tractable in the treewidth of the bipartite graph representing the adjacency of the 1- and 2-simplexes. This algorithm also shows fixed parameter tractability for problems such as erasability and maximum alternating cycle-free matching.
We further show that these results are also true when the treewidth of the dual graph of the triangulated 3-manifold is bounded. Finally, we investigate the respective treewidths of simplicial and generalized triangulations of 3-manifolds.

References

[1]
K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter tractability and completeness IV: On completeness for W{P} and PSPACE analogues. Annals of pure and applied logic, 73(3):235--276, 1995.
[2]
I. Agol, J. Hass, and W. Thurston. The computational complexity of knot genus and spanning area. Transactions of the American Mathematical Society, 358(9):3821--3850, 2006.
[3]
R. Ayala, D. Fernández-Ternero, and J. Vilches. Perfect discrete morse functions on triangulated 3-manifolds. Computational Topology in Image Context, pages 11--19, 2012.
[4]
H. Bodlaender. Discovering treewidth. In Theory and Practice of Computer Science, volume 3381, pages 1--16. Springer, 2005.
[5]
H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. In Symposium on Theory of Computing, pages 226--234. ACM, 1993.
[6]
H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. Journal of Algorithms, 21(2):358--402, 1996.
[7]
B. A. Burton. Introducing Regina, the 3-manifold topology software. Experimental Mathematics, 13(3):267--272, 2004.
[8]
B. A. Burton. Detecting genus in vertex links for the fast enumeration of 3-manifold triangulations. In International Symposium on Symbolic and Algebraic Computation, pages 59--66. ACM, 2011.
[9]
B. A. Burton, R. Budney, W. Pettersson, et al. Regina: Software for 3-manifold topology and normal surface theory. http://regina.sourceforge.net/, 1999--2012.
[10]
B. A. Burton and J. Spreer. The complexity of detecting taut angle structures on triangulations. In Symposium on Discrete Algorithms, pages 168--183. SIAM, 2013.
[11]
M. K. Chari. On discrete Morse functions and combinatorial decompositions. Discrete Mathematics, 217:101--113, 2000.
[12]
M. M. Cohen. A course in simple homotopy theory. Graduate text in Mathematics. Springer, New York, 1973.
[13]
B. Courcelle. The monadic second-order logic of graphs I: recognizable sets of finite graphs. Information and computation, 85(1):12--75, 1990.
[14]
T. K. Dey, H. Edelsbrunner, and S. Guha. Computational topology. In Advances in Discrete and Computational Geometry, volume 223 of Contemporary mathematics, pages 109--143. AMS, 1999.
[15]
R. Downey, M. Fellows, B. Kapron, M. Hallett, and H. Wareham. The parameterized complexity of some problems in logic and linguistics. Logical Foundations of Computer Science, pages 89--100, 1994.
[16]
R. G. Downey and M. R. Fellows. Parameterized complexity, volume 3. Springer, 1999.
[17]
F. Effenberger and J. Spreer. simpcomp - a GAP toolbox for simplicial complexes. ACM Communications in Computer Algebra, 44(4):186 -- 189, 2010.
[18]
F. Effenberger and J. Spreer. simpcomp - a GAP package, Version 1.5.4. http://code.google.com/p/simpcomp/, 2011.
[19]
Ö. Egecioglu and T. F. Gonzalez. A computationally intractable problem on simplicial complexes. Computational Geometry, 6(2):85--98, 1996.
[20]
R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134(1):90--145, 1998.
[21]
D. Gabai, R. Meyerhoff, and P. Milley. Minimum volume cusped hyperbolic three-manifolds. Journal of the American Mathematical Society, 22(4):1157--1215, 2009.
[22]
D. Günther, J. Reininghaus, H. Wagner, and I. Hotz. Efficient computation of 3D Morse-Smale complexes and persistent homology using discrete Morse theory. The Visual Computer, 28:959--969, 2012.
[23]
A. G. Gyulassy. Combinatorial construction of Morse-Smale complexes for data analysis and visualization. PhD thesis, UC Davis, 2008. Advised by Bernd Hamann.
[24]
J. Jonsson. Simplicial complexes of graphs. PhD thesis, KTH, 2005. Advised by Anders Björner.
[25]
M. Joswig and M. E. Pfetsch. Computing optimal discrete morse functions. Electronic Notes in Discrete Mathematics, 17:191--195, 2004.
[26]
M. Joswig and M. E. Pfetsch. Computing optimal morse matchings. SIAM Journal on Discrete Mathematics, 20(1):11--25, 2006.
[27]
T. Kloks. Treewidth: computations and approximations, volume 842. Springer, 1994.
[28]
C. Lange. Combinatorial Curvatures, Group Actions, and Colourings: Aspects of Topological Combinatorics. PhD thesis, Technische Universitat, Berlin, 2004. Advised by Günter M. Ziegler.
[29]
T. Lewiner. Geometric discrete Morse complexes. PhD thesis, Mathematics, PUC-Rio, 2005.
[30]
T. Lewiner, H. Lopes, and G. Tavares. Optimal discrete morse functions for 2-manifolds. Computational Geometry, 26(3):221--233, 2003.
[31]
T. Lewiner, H. Lopes, and G. Tavares. Toward optimality in discrete morse theory. Experimental Mathematics, 12(3):271--285, 2003.
[32]
T. Lewiner, H. Lopes, and G. Tavares. Applications of Forman's discrete Morse theory to topology visualization and mesh compression. Transactions on Visualization and Computer Graphics, 10(5):499--508, 2004.
[33]
F. H. Lutz. Combinatorial 3-manifolds with 10 vertices. Beitr\"age Algebra Geom., 49(1):97--106, 2008.
[34]
R. Malgouyres and A. Francés. Determining whether a simplicial 3-complex collapses to a 1-complex is NP-complete. In Discrete Geometry for Computer Imagery, pages 177--188. Springer, 2008.
[35]
E. E. Moise. Affine structures in 3-manifolds V: The triangulation theorem and hauptvermutung. Annals of Mathematics, 56(1):96--114, 1952.
[36]
M. Morse. The critical points of functions of n variables. Transactions of the American Mathematical Society, 33:77--91, 1931.
[37]
L. Perković and B. Reed. An improved algorithm for finding tree decompositions of small width. In Graph-theoretic concepts in computer science, pages 148--154. Springer, 1999.
[38]
G. Reeb. Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique. Comptes Rendus de L'Académie des Sciences de Paris, 222:847--849, 1946.
[39]
J. Reininghaus. Computational Discrete Morse Theory. PhD thesis, Freie Universitat, Berlin, 2012. Advised by Ingrid Hotz.
[40]
V. Robins, P. J. Wood, and A. P. Sheppard. Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. Transactions on Pattern Analysis and Machine Intelligence, 33(8):1646--1658, 2011.
[41]
A. Szymczak and J. Rossignac. Grow & fold: Compression of tetrahedral meshes. In Symposium on Solid Modeling and Applications, pages 54--64. ACM, 1999.
[42]
M. Tancer. Strong d-collapsibility. Contrib. Discrete Math., 6(2):32--35, 2011.
[43]
R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM, 22(2):215--225, 1975.
[44]
T. van Dijk, J.-P. van den Heuvel, and W. Slob. Computing treewidth with LibTW. http://www.treewidth.com/, 2006.

Cited By

View all
  • (2018)An entropy-based persistence barcodePattern Recognition10.1016/j.patcog.2014.06.02348:2(391-401)Online publication date: 30-Dec-2018
  • (2017)Дискретная теория Морса для пространств модулей шарнирных многоугольников, или пасьянс на окружностиDiscrete Morse theory for moduli spaces of flexible polygons, or solitaire game on the circleМатематический сборникMatematicheskii Sbornik10.4213/sm8677208:9(100-115)Online publication date: 2017
  • (2017)Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a circleSbornik: Mathematics10.1070/SM8677208:9(1353-1367)Online publication date: 28-Nov-2017
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SoCG '13: Proceedings of the twenty-ninth annual symposium on Computational geometry
June 2013
472 pages
ISBN:9781450320313
DOI:10.1145/2462356
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 June 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. W[P]-completeness
  2. alternating cycle-free matching
  3. collapsibility
  4. computational topology
  5. discrete morse theory
  6. erasability
  7. fixed parameter tractability
  8. parameterized complexity
  9. treewidth

Qualifiers

  • Research-article

Conference

SoCG '13
SoCG '13: Symposium on Computational Geometry 2013
June 17 - 20, 2013
Rio de Janeiro, Brazil

Acceptance Rates

SoCG '13 Paper Acceptance Rate 48 of 137 submissions, 35%;
Overall Acceptance Rate 625 of 1,685 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 02 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2018)An entropy-based persistence barcodePattern Recognition10.1016/j.patcog.2014.06.02348:2(391-401)Online publication date: 30-Dec-2018
  • (2017)Дискретная теория Морса для пространств модулей шарнирных многоугольников, или пасьянс на окружностиDiscrete Morse theory for moduli spaces of flexible polygons, or solitaire game on the circleМатематический сборникMatematicheskii Sbornik10.4213/sm8677208:9(100-115)Online publication date: 2017
  • (2017)Discrete Morse theory for the moduli spaces of polygonal linkages, or solitaire on a circleSbornik: Mathematics10.1070/SM8677208:9(1353-1367)Online publication date: 28-Nov-2017
  • (2017)Approximation algorithms for Max Morse MatchingComputational Geometry: Theory and Applications10.1016/j.comgeo.2016.10.00261:C(1-23)Online publication date: 1-Feb-2017
  • (2016)On the complexity of immersed normal surfacesGeometry & Topology10.2140/gt.2016.20.106120:2(1061-1083)Online publication date: 28-Apr-2016
  • (2015)Morse complexes for shape segmentation and homological analysisComputer Graphics Forum10.1111/cgf.1259634:2(761-785)Online publication date: 1-May-2015
  • (2014)Fixed Parameter Tractable Algorithms in Combinatorial TopologyComputing and Combinatorics10.1007/978-3-319-08783-2_26(300-311)Online publication date: 2014

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media