Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3149457.3149463acmotherconferencesArticle/Chapter ViewAbstractPublication PageshpcasiaConference Proceedingsconference-collections
research-article

Acceleration of Dynamic n-Tuple Computations in Many-Body Molecular Dynamics

Published: 28 January 2018 Publication History

Abstract

Computation on dynamic n-tuples of particles is ubiquitous in scientific computing, with an archetypal application in many-body molecular dynamics (MD) simulations. We propose a tuple-decomposition (TD) approach that reorders computations according to dynamically created lists of n-tuples. We analyze the performance characteristics of the TD approach on general purpose graphics processing units for MD simulations involving pair (n = 2) and triplet (n = 3) interactions. The results show superior performance of the TD approach over the conventional particle-decomposition (PD) approach. Detailed analyses reveal the register footprint as the key factor that dictates the performance. Furthermore, the TD approach is found to outperform PD for more intensive computations of quadruplet (n = 4) interactions in first principles-informed reactive MD simulations based on the reactive force-field (ReaxFF) method. This work thus demonstrates the viable performance portability of the TD approach across a wide range of applications.

References

[1]
D. Frenkel and B. Smit. 2001. Understanding Molecular Simulation. Academic Press, San Diego, CA.
[2]
A. Rahman. 1964. Correlations in the motion of atoms in liquid argon. Physical Review, 136 (2A). A405--A411.
[3]
M. Levitt. 2014. Birth and future of multiscale modeling for macromolecular systems (Nobel lecture). Angewandte Chemie International Edition, 53 (38). 10006--10018.10.1002/anie.201403691
[4]
S. Tsuneyuki, Y. Matsui, H. Aoki and M. Tsukada. 1989. New pressure-induced structural transformations in silica obtained by computer-simulation. Nature, 339 (6221). 209--211.
[5]
F. Shimojo, I. Ebbsjo, R. K. Kalia, A. Nakano, J. P. Rino and P. Vashishta. 2000. Molecular dynamics simulation of structural transformation in silicon carbide under pressure. Physical Review Letters, 84 (15). 3338--3341.
[6]
A. C. T. van Duin, S. Dasgupta, F. Lorant and W. A. Goddard. 2001. ReaxFF: a reactive force field for hydrocarbons. Journal of Physical Chemistry A, 105 (41). 9396--9409.
[7]
A. Nakano, R. K. Kalia, P. Vashishta, T. J. Campbell, S. Ogata, F. Shimojo and S. Saini. ACM/IEEE, 2001. Scalable atomistic simulation algorithms for materials research. Proceedings of Supercomputing, SC01.
[8]
P. Vashishta, R. K. Kalia, J. P. Rino and I. Ebbsjo. 1990. Interaction potential for SiO2 - a molecular-dynamics study of structural correlations. Physical Review B, 41 (17). 12197--12209.
[9]
A. Nakano, R. K. Kalia, K. Nomura, A. Sharma, P. Vashishta, F. Shimojo, A. C. T. van Duin, W. A. Goddard, R. Biswas, D. Srivastava and L. H. Yang. 2008. De novo ultrascale atomistic simulations on high-end parallel supercomputers. International Journal of High Performance Computing Applications, 22 (1). 113--128.
[10]
K. Nomura, P. E. Small, R. K. Kalia, A. Nakano and P. Vashishta. 2015. An extended-Lagrangian scheme for charge equilibration in reactive molecular dynamics simulations. Computer Physics Communications, 192. 91--96.
[11]
D. C. Rapaport. 1988. Large-scale molecular-dynamics simulation using vector and parallel computers. Computer Physics Reports, 9 (1). 1--53.
[12]
A. Nakano, P. Vashishta and R. K. Kalia. 1993. Parallel multiple-time-step molecular-dynamics with 3-body interaction. Computer Physics Communications, 77 (3). 303--312.
[13]
S. Plimpton. 1995. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117 (1). 1--19.
[14]
L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan and K. Schulten. 1999. NAMD2: greater scalability for parallel molecular dynamics. Journal of Computational Physics, 151 (1). 283--312.
[15]
D. E. Shaw. 2005. A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions. Journal of Computational Chemistry, 26 (13). 1318--1328.
[16]
D. A. Reed and J. Dongarra. 2015. Exascale computing and big data. Communications of the ACM, 58 (7). 56--68.
[17]
K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, K. Shimamura, F. Shimojo, M. Kunaseth, P. C. Messina and N. A. Romero. IEEE/ACM, 2014. Metascalable quantum molecular dynamics simulations of hydrogen-on-demand. Proceedings of Supercomputing, SC14. 661--673.
[18]
F. Shimojo, R. K. Kalia, M. Kunaseth, A. Nakano, K. Nomura, S. Ohmura, K. Shimamura and P. Vashishta. 2014. A divide-conquer-recombine algorithmic paradigm for multiscale materials modeling. Journal of Chemical Physics, 140 (18). 18A529.
[19]
N. A. Romero, A. Nakano, K. Riley, F. Shimojo, R. K. Kalia, P. Vashishta and P. C. Messina. 2015. Quantum molecular dynamics in the post-petaflops era. IEEE Computer, 48 (11). 33--41.
[20]
J. Mellor-Crummey, D. Whalley and K. Kennedy. 2001. Improving memory hierarchy performance for irregular applications using data and computation reorderings. International Journal of Parallel Programming, 29 (3). 217--247.
[21]
M. Kunaseth, R. K. Kalia, A. Nakano, K. Nomura and P. Vashishta. ACM/IEEE, 2013. A scalable parallel algorithm for dynamic range-limited n-tuple computation in many-body molecular dynamics simulation. Proceedings of Supercomputing, SC13.
[22]
J. P. Walters, V. Balu, V. Chaudhary, D. Kofke and A. Schultz. ISCA, 2008. Accelerating molecular dynamics simulations with GPUs. Proceedings of International Conference on Parallel and Distributed Computing and Communication Systems (PDCCS 2008). 44--49.
[23]
W. M. Brown, P. Wang, S. J. Plimpton and A. N. Tharrington. 2011. Implementing molecular dynamics on hybrid high performance computers - short range forces. Computer Physics Communications, 182 (4). 898--911.
[24]
T. J. Lipscomb, A. Zou and S. S. Cho. ACM, 2012. Parallel Verlet neighbor list algorithm for GPU-optimized MD simulations. Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine, (BCB '12). 321--328.
[25]
W. M. Brown and M. Yamada. 2013. Implementing molecular dynamics on hybrid high performance computers-three-body potentials. Computer Physics Communications, 184 (12). 2785--2793.
[26]
S. B. Kylasa, H. M. Aktulga and A. Y. Grama. 2014. PuReMDGPU: a reactive molecular dynamics simulation package for GPUs. Journal of Computational Physics, 272. 343--359.
[27]
A. Nakano, R. K. Kalia and P. Vashishta. 1994. Multiresolution molecular-dynamics algorithm for realistic materials modeling on parallel computers. Computer Physics Communications, 83 (2-3). 197--214.
[28]
M. P. Allen and D. J. Tildesley. 1987. Computer Simulation of Liquids. Oxford University Press, Oxford, UK.
[29]
W.-m. W. Hwu. 2011. GPU Computing Gems Jade Edition. Morgan Kaufmann, Waltham, MA.
[30]
http://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
[31]
J. Tersoff. 1989. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Physical Review B, 39 (8). 5566--5568.
[32]
D. W. Brenner. 1990. Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Physical Review B, 42 (15). 9458--9471.
[33]
A. K. Rappe and W. A. Goddard. 1991. Charge equilibration for molecular-dynamics simulations. Journal of Physical Chemistry, 95 (8). 3358--3363.
[34]
F. H. Streitz and J. W. Mintmire. 1994. Electrostatic potentials for metal-oxide surfaces and interfaces. Physical Review B, 50 (16). 11996--12003.
[35]
S. W. Rick, S. J. Stuart and B. J. Berne. 1994. Dynamical fluctuating charge force-fields - application to liquid water. Journal of Chemical Physics, 101 (7). 6141--6156.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
HPCAsia '18: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region
January 2018
322 pages
ISBN:9781450353724
DOI:10.1145/3149457
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 January 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Applications/Computational materials science and engineering
  2. Performance Measurement/Analysis
  3. modeling or simulation methods

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

HPC Asia 2018

Acceptance Rates

HPCAsia '18 Paper Acceptance Rate 30 of 67 submissions, 45%;
Overall Acceptance Rate 69 of 143 submissions, 48%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 83
    Total Downloads
  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media