Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

ScaNeRF: Scalable Bundle-Adjusting Neural Radiance Fields for Large-Scale Scene Rendering

Published: 05 December 2023 Publication History
  • Get Citation Alerts
  • Abstract

    High-quality large-scale scene rendering requires a scalable representation and accurate camera poses. This research combines tile-based hybrid neural fields with parallel distributive optimization to improve bundle-adjusting neural radiance fields. The proposed method scales with a divide-and-conquer strategy. We partition scenes into tiles, each with a multi-resolution hash feature grid and shallow chained diffuse and specular multilayer perceptrons (MLPs). Tiles unify foreground and background via a spatial contraction function that allows both distant objects in outdoor scenes and planar reflections as virtual images outside the tile. Decomposing appearance with the specular MLP allows a specular-aware warping loss to provide a second optimization path for camera poses. We apply the alternating direction method of multipliers (ADMM) to achieve consensus among camera poses while maintaining parallel tile optimization. Experimental results show that our method outperforms state-of-the-art neural scene rendering method quality by 5%--10% in PSNR, maintaining sharp distant objects and view-dependent reflections across six indoor and outdoor scenes.

    Supplementary Material

    ZIP File (papers_485s4-file4.zip)
    supplemental
    MP4 File (papers_485s4-file3.mp4)
    supplemental

    References

    [1]
    Sameer Agarwal, Noah Snavely, Steven M Seitz, and Richard Szeliski. 2010. Bundle adjustment in the large. In Eur. Conf. Comput. Vis. 29--42.
    [2]
    Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan. 2021. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In Int. Conf. Comput. Vis. 5855--5864.
    [3]
    Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. 2020. Neural reflectance fields for appearance acquisition. arXiv preprint arXiv:2008.03824 (2020).
    [4]
    Wenjing Bian, Zirui Wang, Kejie Li, Jia-Wang Bian, and Victor Adrian Prisacariu. 2023. NoPe-NeRF: Optimising neural radiance field with no pose prior. In IEEE Conf. Comput. Vis. Pattern Recog. 4160--4169.
    [5]
    Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Barron, Ce Liu, and Hendrik Lensch. 2021. Nerd: Neural reflectance decomposition from image collections. In Int. Conf. Comput. Vis. 12684--12694.
    [6]
    Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine learning 3, 1 (2011), 1--122.
    [7]
    Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen. 2001. Unstructured lumigraph rendering. In Proc. of SIGGRAPH. 425--432.
    [8]
    Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José Neira, Ian Reid, and John J. Leonard. 2016. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics 32, 6 (2016), 1309--1332.
    [9]
    CapturingReality. 2016. Reality capture, http://capturingreality.com.
    [10]
    Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. 2022. Efficient geometry-aware 3D generative adversarial networks. In IEEE Conf. Comput. Vis. Pattern Recog. 16123--16133.
    [11]
    Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022b. Tensorf: Tensorial radiance fields. In Eur. Conf. Comput. Vis. 333--350.
    [12]
    Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. 2022a. Mobilenerf: Exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. arXiv preprint arXiv:2208.00277 (2022).
    [13]
    Shin-Fang Chng, Sameera Ramasinghe, Jamie Sherrah, and Simon Lucey. 2022. Gaussian activated neural radiance fields for high fidelity reconstruction and pose estimation. In Eur. Conf. Comput. Vis. 264--280.
    [14]
    Ronald Clark. 2022a. Volumetric bundle adjustment for online photorealistic scene capture. In IEEE Conf. Comput. Vis. Pattern Recog. 6124--6132.
    [15]
    Ronald Clark. 2022b. Volumetric bundle adjustment for online photorealistic scene capture. In IEEE Conf. Comput. Vis. Pattern Recog. 6124--6132.
    [16]
    Amaël Delaunoy and Marc Pollefeys. 2014. Photometric bundle adjustment for dense multi-view 3d modeling. In IEEE Conf. Comput. Vis. Pattern Recog. 1486--1493.
    [17]
    Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. 2022. Depth-supervised nerf: Fewer views and faster training for free. In IEEE Conf. Comput. Vis. Pattern Recog. 12882--12891.
    [18]
    Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir Zamir. 2021. Omnidata: A scalable pipeline for making multi-task mid-level vision datasets from 3d scans. In Int. Conf. Comput. Vis. 10766--10776.
    [19]
    Jakob Engel, Vladlen Koltun, and Daniel Cremers. 2017. Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40, 3 (2017), 611--625.
    [20]
    Jakob Engel, Thomas Schöps, and Daniel Cremers. 2014. LSD-SLAM: Large-scale direct monocular SLAM. In Eur. Conf. Comput. Vis. 834--849.
    [21]
    Anders Eriksson, John Bastian, Tat-Jun Chin, and Mats Isaksson. 2016. A consensus-based framework for distributed bundle adjustment. In IEEE Conf. Comput. Vis. Pattern Recog. 1754--1762.
    [22]
    Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa. 2022. Plenoxels: Radiance fields without neural networks. In IEEE Conf. Comput. Vis. Pattern Recog. 5501--5510.
    [23]
    Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. 2021. Fastnerf: High-fidelity neural rendering at 200fps. In Int. Conf. Comput. Vis. 14346--14355.
    [24]
    Haoyu Guo, Sida Peng, Haotong Lin, Qianqian Wang, Guofeng Zhang, Hujun Bao, and Xiaowei Zhou. 2022. Neural 3d scene reconstruction with the manhattan-world assumption. In IEEE Conf. Comput. Vis. Pattern Recog. 5511--5520.
    [25]
    Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg. 2022. Shape, light & material decomposition from images using monte carlo rendering and denoising. arXiv preprint arXiv:2206.03380 (2022).
    [26]
    Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Brostow. 2018. Deep blending for free-viewpoint image-based rendering. ACM Trans. Graph. 37, 6 (2018), 1--15.
    [27]
    Peter Hedman, Tobias Ritschel, George Drettakis, and Gabriel Brostow. 2016. Scalable inside-out image-based rendering. ACM Trans. Graph. 35, 6 (2016), 1--11.
    [28]
    Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul Debevec. 2021. Baking neural radiance fields for real-time view synthesis. In Int. Conf. Comput. Vis. 5875--5884.
    [29]
    Tao Hu, Shu Liu, Yilun Chen, Tiancheng Shen, and Jiaya Jia. 2022. Efficientnerf efficient neural radiance fields. In IEEE Conf. Comput. Vis. Pattern Recog. 12902--12911.
    [30]
    Ajay Jain, Matthew Tancik, and Pieter Abbeel. 2021. Putting nerf on a diet: Semantically consistent few-shot view synthesis. In Int. Conf. Comput. Vis. 5885--5894.
    [31]
    Yoonwoo Jeong, Seokjun Ahn, Christopher Choy, Anima Anandkumar, Minsu Cho, and Jaesik Park. 2021. Self-calibrating neural radiance fields. In Int. Conf. Comput. Vis. 5846--5854.
    [32]
    Roland Jung and Stephan Weiss. 2021. Scalable recursive distributed collaborative state estimation for aided inertial navigation. In ICRA. 1896--1902.
    [33]
    Alexander Kaplan and Rainer Tichatschke. 1998. Proximal point methods and nonconvex optimization. Journal of global Optimization 13 (1998), 389--406.
    [34]
    Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy Mitra. 2022. Relu fields: The little non-linearity that could. In SIGGRAPH Conference. 1--9.
    [35]
    Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
    [36]
    Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. 2020. Modular primitives for high-performance differentiable rendering. ACM Trans. Graph. 39, 6 (2020), 1--14.
    [37]
    Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. 2021. Barf: Bundle-adjusting neural radiance fields. In Int. Conf. Comput. Vis. 5741--5751.
    [38]
    Yunzhi Lin, Thomas Müller, Jonathan Tremblay, Bowen Wen, Stephen Tyree, Alex Evans, Patricio A. Vela, and Stan Birchfield. 2023. Parallel Inversion of Neural Radiance Fields for Robust Pose Estimation. In ICRA.
    [39]
    Philipp Lindenberger, Paul-Edouard Sarlin, Viktor Larsson, and Marc Pollefeys. 2021. Pixel-perfect structure-from-motion with featuremetric refinement. In Int. Conf. Comput. Vis. 5987--5997.
    [40]
    Lingjie Liu, Weipeng Xu, Michael Zollhoefer, Hyeongwoo Kim, Florian Bernard, Marc Habermann, Wenping Wang, and Christian Theobalt. 2019b. Neural rendering and reenactment of human actor videos. ACM Trans. Graph. 38, 5 (2019), 1--14.
    [41]
    Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019a. Soft rasterizer: A differentiable renderer for image-based 3d reasoning. In Int. Conf. Comput. Vis. 7708--7717.
    [42]
    Andreas Meuleman, Yu-Lun Liu, Chen Gao, Jia-Bin Huang, Changil Kim, Min H Kim, and Johannes Kopf. 2023. Progressively optimized local radiance fields for robust view synthesis. In IEEE Conf. Comput. Vis. Pattern Recog. 16539--16548.
    [43]
    Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance fields for view synthesis. In Eur. Conf. Comput. Vis.
    [44]
    Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41, 4 (2022), 1--15.
    [45]
    Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex Evans, Thomas Müller, and Sanja Fidler. 2022. Extracting triangular 3d models, materials, and lighting from images. In IEEE Conf. Comput. Vis. Pattern Recog. 8280--8290.
    [46]
    Shree K Nayar, Peter N Belhumeur, and Terry E Boult. 2004. Lighting sensitive display. ACM Trans. Graph. 23, 4 (2004), 963--979.
    [47]
    Michael Niemeyer, Jonathan T Barron, Ben Mildenhall, Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. 2022. Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs. In IEEE Conf. Comput. Vis. Pattern Recog. 5480--5490.
    [48]
    Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. In Adv. Neural Inform. Process. Syst., Vol. 32.
    [49]
    Zhimin Peng, Yangyang Xu, Ming Yan, and Wotao Yin. 2016. Arock: an algorithmic framework for asynchronous parallel coordinate updates. SIAM Journal on Scientific Computing 38, 5 (2016), A2851--A2879.
    [50]
    Sameera Ramasinghe and Simon Lucey. 2022. Beyond periodicity: towards a unifying framework for activations in coordinate-MLPs. In Eur. Conf. Comput. Vis. 142--158.
    [51]
    Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. 2021. Kilonerf: Speeding up neural radiance fields with thousands of tiny mlps. In Int. Conf. Comput. Vis. 14335--14345.
    [52]
    Christian Reiser, Richard Szeliski, Dor Verbin, Pratul P Srinivasan, Ben Mildenhall, Andreas Geiger, Jonathan T Barron, and Peter Hedman. 2023. Merf: Memory-efficient radiance fields for real-time view synthesis in unbounded scenes. arXiv preprint arXiv:2302.12249 (2023).
    [53]
    Konstantinos Rematas, Andrew Liu, Pratul P. Srinivasan, Jonathan T. Barron, Andrea Tagliasacchi, Tom Funkhouser, and Vittorio Ferrari. 2022. Urban radiance fields. IEEE Conf. Comput. Vis. Pattern Recog. (2022).
    [54]
    Gernot Riegler and Vladlen Koltun. 2021. Stable view synthesis. In IEEE Conf. Comput. Vis. Pattern Recog. 12216--12225.
    [55]
    Simon Rodriguez, Siddhant Prakash, Peter Hedman, and George Drettakis. 2020. Image-based rendering of cars using semantic labels and approximate reflection flow. Proceedings of the ACM on Computer Graphics and Interactive Techniques 3 (2020).
    [56]
    Barbara Roessle, Jonathan T Barron, Ben Mildenhall, Pratul P Srinivasan, and Matthias Nießner. 2022. Dense depth priors for neural radiance fields from sparse input views. In IEEE Conf. Comput. Vis. Pattern Recog. 12892--12901.
    [57]
    Paul-Edouard Sarlin, Ajaykumar Unagar, Mans Larsson, Hugo Germain, Carl Toft, Viktor Larsson, Marc Pollefeys, Vincent Lepetit, Lars Hammarstrand, Fredrik Kahl, et al. 2021. Back to the feature: Learning robust camera localization from pixels to pose. In IEEE Conf. Comput. Vis. Pattern Recog. 3247--3257.
    [58]
    Johannes L Schonberger and Jan-Michael Frahm. 2016. Structure-from-motion revisited. In IEEE Conf. Comput. Vis. Pattern Recog. 4104--4113.
    [59]
    Sudipta N Sinha, Johannes Kopf, Michael Goesele, Daniel Scharstein, and Richard Szeliski. 2012. Image-based rendering for scenes with reflections. ACM Trans. Graph. 31, 4 (2012), 1--10.
    [60]
    Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. 2003. Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 22, 3 (2003), 382--391.
    [61]
    Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall, and Jonathan T Barron. 2021. Nerv: Neural reflectance and visibility fields for relighting and view synthesis. In IEEE Conf. Comput. Vis. Pattern Recog. 7495--7504.
    [62]
    Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022b. Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction. In IEEE Conf. Comput. Vis. Pattern Recog. 5459--5469.
    [63]
    Jiaming Sun, Xi Chen, Qianqian Wang, Zhengqi Li, Hadar Averbuch-Elor, Xiaowei Zhou, and Noah Snavely. 2022a. Neural 3D reconstruction in the wild. In SIGGRAPH Conference. 1--9.
    [64]
    Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron, and Henrik Kretzschmar. 2022. Block-nerf: Scalable large scene neural view synthesis. In IEEE Conf. Comput. Vis. Pattern Recog. 8248--8258.
    [65]
    Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, and Angjoo Kanazawa. 2023. Nerfstudio: A Modular Framework for Neural Radiance Field Development. In SIGGRAPH Conference Proceedings.
    [66]
    Chengzhou Tang and Ping Tan. 2018. Ba-net: Dense bundle adjustment network. In Int. Conf. Learn. Represent.
    [67]
    Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon. 2000. Bundle adjustment---a modern synthesis. In Vision Algorithms: Theory and Practice: International Workshop on Vision Algorithms. 298--372.
    [68]
    Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. 2022. Mega-nerf: Scalable construction of large-scale nerfs for virtual fly-throughs. In IEEE Conf. Comput. Vis. Pattern Recog. 12922--12931.
    [69]
    Haithem Turki, Jason Y Zhang, Francesco Ferroni, and Deva Ramanan. 2023. SUDS: Scalable Urban Dynamic Scenes. arXiv preprint arXiv:2303.14536 (2023).
    [70]
    Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and Pratul P Srinivasan. 2022. Ref-nerf: Structured view-dependent appearance for neural radiance fields. In IEEE Conf. Comput. Vis. Pattern Recog. 5481--5490.
    [71]
    Jiepeng Wang, Peng Wang, Xiaoxiao Long, Christian Theobalt, Taku Komura, Lingjie Liu, and Wenping Wang. 2022. Neuris: Neural reconstruction of indoor scenes using normal priors. In Eur. Conf. Comput. Vis. 139--155.
    [72]
    Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality assessment: from error visibility to structural similarity. IEEE TIP 13, 4 (2004), 600--612.
    [73]
    Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu. 2021. NeRF-: Neural radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064 (2021).
    [74]
    Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, and Supasorn Suwajanakorn. 2021. Nex: Real-time view synthesis with neural basis expansion. In IEEE Conf. Comput. Vis. Pattern Recog. 8534--8543.
    [75]
    Daniel N Wood, Daniel I Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H Salesin, and Werner Stuetzle. 2000. Surface light fields for 3D photography. In Proc. of SIGGRAPH. 287--296.
    [76]
    Xiuchao Wu, Jiamin Xu, Zihan Zhu, Hujun Bao, Qixing Huang, James Tompkin, and Weiwei Xu. 2022. Scalable neural indoor scene rendering. ACM Trans. Graph. 41, 4 (2022), 1--16.
    [77]
    Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin. 2022. Bungeenerf: Progressive neural radiance field for extreme multi-scale scene rendering. In Eur. Conf. Comput. Vis. 106--122.
    [78]
    Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022. Neural fields in visual computing and beyond. Comput. Graph. Forum 41, 2 (2022), 641--676.
    [79]
    Linning Xu, Yuanbo Xiangli, Sida Peng, Xingang Pan, Nanxuan Zhao, Christian Theobalt, Bo Dai, and Dahua Lin. 2023. Grid-guided Neural Radiance Fields for Large Urban Scenes. arXiv preprint arXiv:2303.14001 (2023).
    [80]
    Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich Neumann. 2022. Point-nerf: Point-based neural radiance fields. In IEEE Conf. Comput. Vis. Pattern Recog. 5438--5448.
    [81]
    Yao Yao, Jingyang Zhang, Jingbo Liu, Yihang Qu, Tian Fang, David McKinnon, Yanghai Tsin, and Long Quan. 2022. Neilf: Neural incident light field for physically-based material estimation. In Eur. Conf. Comput. Vis. 700--716.
    [82]
    Lin Yen-Chen, Pete Florence, Jonathan T Barron, Alberto Rodriguez, Phillip Isola, and Tsung-Yi Lin. 2021. inerf: Inverting neural radiance fields for pose estimation. In IROS. 1323--1330.
    [83]
    Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021a. Plenoctrees for real-time rendering of neural radiance fields. In Int. Conf. Comput. Vis. 5752--5761.
    [84]
    Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. 2021b. pixelnerf: Neural radiance fields from one or few images. In IEEE Conf. Comput. Vis. Pattern Recog. 4578--4587.
    [85]
    Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler, and Andreas Geiger. 2022. Monosdf: Exploring monocular geometric cues for neural implicit surface reconstruction. arXiv preprint arXiv:2206.00665 (2022).
    [86]
    Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and Noah Snavely. 2021a. Physg: Inverse rendering with spherical gaussians for physics-based material editing and relighting. In IEEE Conf. Comput. Vis. Pattern Recog. 5453--5462.
    [87]
    Kai Zhang, Gerrot Riegler, Noah Snavely, and Vladlen Koltun. 2020. Nerf++: Analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020).
    [88]
    Runze Zhang, Siyu Zhu, Tian Fang, and Long Quan. 2017. Distributed very large scale bundle adjustment by global camera consensus. In Int. Conf. Comput. Vis. 29--38.
    [89]
    Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T Freeman, and Jonathan T Barron. 2021b. Nerfactor: Neural factorization of shape and reflectance under an unknown illumination. ACM Trans. Graph. 40, 6 (2021), 1--18.
    [90]
    Yuqi Zhang, Guanying Chen, and Shuguang Cui. 2023. Efficient large-scale scene representation with a hybrid of high-resolution grid and plane features. arXiv preprint arXiv:2303.03003 (2023).
    [91]
    Pengxiang Zhu, Patrick Geneva, Wei Ren, and Guoquan Huang. 2021. Distributed visual-inertial cooperative localization. In IROS. 8714--8721.
    [92]
    Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng Cui, Martin R Oswald, and Marc Pollefeys. 2022. Nice-slam: Neural implicit scalable encoding for slam. In IEEE Conf. Comput. Vis. Pattern Recog. 12786--12796.

    Cited By

    View all

    Index Terms

    1. ScaNeRF: Scalable Bundle-Adjusting Neural Radiance Fields for Large-Scale Scene Rendering

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 42, Issue 6
      December 2023
      1565 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3632123
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 05 December 2023
      Published in TOG Volume 42, Issue 6

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. NeRF
      2. alternating direction method of multipliers
      3. large-scale scenes
      4. neural fields

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)312
      • Downloads (Last 6 weeks)26

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media