Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parametric Toricity of Steady State Varieties of Reaction Networks

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2021)

Abstract

We study real steady state varieties of the dynamics of chemical reaction networks. The dynamics are derived using mass action kinetics with parametric reaction rates. The models studied are not inherently parametric in nature. Rather, our interest in parameters is motivated by parameter uncertainty, as reaction rates are typically either measured with limited precision or estimated. We aim at detecting toricity and shifted toricity, using a framework that has been recently introduced and studied for the non-parametric case over both the real and the complex numbers. While toricity requires that the variety specifies a subgroup of the direct power of the multiplicative group of the underlying field, shifted toricity requires only a coset. In the non-parametric case these requirements establish real decision problems. In the presence of parameters we must go further and derive necessary and sufficient conditions in the parameters for toricity or shifted toricity to hold. Technically, we use real quantifier elimination methods. Our computations on biological networks here once more confirm shifted toricity as a relevant concept, while toricity holds only for degenerate parameter choices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Alternatively, one could temporarily introduce constants \(\mathbf {k}\) and state equivalence in an extended theory of real closed fields: \({\text {Th}}(\mathbb {R}) \cup \{\mathbf {k}>0\} \,\models \, \varphi \longleftrightarrow \varphi '\). This point of view is common in algebraic model theory and has been taken in [14].

  2. 2.

    https://sourceforge.net/projects/reduce-algebra/.

  3. 3.

    https://www.ebi.ac.uk/biomodels/BIOMD0000000101.

  4. 4.

    i.e., the ones with “\(\emptyset \)” on their left hand side or right hand side, respectively.

  5. 5.

    https://www.ebi.ac.uk/biomodels/BIOMD0000000001.

References

  1. Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity of quantifier elimination. J. ACM 43(6), 1002–1045 (1996). https://doi.org/10.1145/235809.235813

    Article  MathSciNet  MATH  Google Scholar 

  2. Boltzmann, L.: Lectures on Gas Theory. University of California Press, Berkeley and Los Angeles (1964)

    Book  Google Scholar 

  3. Boulier, F., et al.: The SYMBIONT project: symbolic methods for biological networks. ACM Commun. Comput. Algebra 52(3), 67–70 (2018). https://doi.org/10.1145/3313880.3313885

    Article  Google Scholar 

  4. Boulier, F., et al.: The SYMBIONT project: symbolic methods for biological networks. F1000Research 7(1341) (2018). https://doi.org/10.7490/f1000research.1115995.1

  5. Bradford, R., et al.: A case study on the parametric occurrence of multiple steady states. In: Proceedings of the ISSAC 2017, pp. 45–52. ACM (2017). https://doi.org/10.1145/3087604.3087622

  6. Bradford, R., et al.: Identifying the parametric occurrence of multiple steady states for some biological networks. J. Symb. Comput. 98, 84–119 (2020). https://doi.org/10.1016/j.jsc.2019.07.008

    Article  MathSciNet  MATH  Google Scholar 

  7. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003). https://doi.org/10.1145/968708.968710

    Article  MATH  Google Scholar 

  8. Chelliah, V., et al.: BioModels: ten-year anniversary. Nucl. Acids Res. 43(D1), D542–D548 (2015). https://doi.org/10.1093/nar/gku1181

    Article  Google Scholar 

  9. Chen, C., Moreno Maza, M.: Quantifier elimination by cylindrical algebraic decomposition based on regular chains. J. Symb. Comput. 75, 74–93 (2016). https://doi.org/10.1016/j.jsc.2015.11.008

    Article  MathSciNet  MATH  Google Scholar 

  10. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991). https://doi.org/10.1016/S0747-7171(08)80152-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Conradi, C., Kahle, T.: Detecting binomiality. Adv. Appl. Math. 71, 52–67 (2015). https://doi.org/10.1016/j.aam.2015.08.004

    Article  MathSciNet  MATH  Google Scholar 

  12. Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J. Symb. Comput. 44(11), 1551–1565 (2009). https://doi.org/10.1016/j.jsc.2008.08.006

    Article  MathSciNet  MATH  Google Scholar 

  13. Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic. ACM SIGSAM Bull. 31(2), 2–9 (1997). https://doi.org/10.1145/261320.261324

    Article  Google Scholar 

  14. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered fields. J. Symb. Comput. 24(2), 209–231 (1997). https://doi.org/10.1006/jsco.1997.0123

    Article  MathSciNet  MATH  Google Scholar 

  15. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. In: Matzat, B.H., Greuel, G.M., Hiss, G. (eds.) Algorithmic Algebra and Number Theory, pp. 221–247. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-642-59932-3_11

    Chapter  Google Scholar 

  16. Edelstein, S.J., Schaad, O., Henry, E., Bertrand, D., Changeux, J.P.: A kinetic mechanism for nicotinic acetylcholine receptors based on multiple allosteric transitions. Biol. Cybern. 75(5), 361–379 (1996). https://doi.org/10.1007/s004220050302

    Article  MATH  Google Scholar 

  17. Einstein, A.: Strahlungs-emission und -absorption nach der Quantentheorie. Verh. Dtsch. Phys. Ges. 18, 318–323 (1916)

    Google Scholar 

  18. Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Math. J. 84(1), 1–45 (1996). https://doi.org/10.1215/S0012-7094-96-08401-X

    Article  MathSciNet  MATH  Google Scholar 

  19. England, M., Errami, H., Grigoriev, D., Radulescu, O., Sturm, T., Weber, A.: Symbolic versus numerical computation and visualization of parameter regions for multistationarity of biological networks. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 93–108. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_8

    Chapter  Google Scholar 

  20. Feinberg, M.: Complex balancing in general kinetic systems. Arch. Rational Mech. Anal. 49(3), 187–194 (1972). https://doi.org/10.1007/BF00255665

    Article  MathSciNet  Google Scholar 

  21. Feinberg, M.: Stability of complex isothermal reactors–I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42(10), 2229–2268 (1987). https://doi.org/10.1016/0009-2509(87)80099-4

    Article  Google Scholar 

  22. Feinberg, M.: Foundations of Chemical Reaction Network Theory. AMS, vol. 202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03858-8

    Book  MATH  Google Scholar 

  23. Gatermann, K.: Counting stable solutions of sparse polynomial systems in chemistry. In: Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, Contemporary Mathematics, vol. 286, pp. 53–69. AMS, Providence (2001). https://doi.org/10.1090/conm/286/04754

  24. Gatermann, K., Wolfrum, M.: Bernstein’s second theorem and Viro’s method for sparse polynomial systems in chemistry. Adv. Appl. Math. 34(2), 252–294 (2005). https://doi.org/10.1016/j.aam.2004.04.003

    Article  MathSciNet  MATH  Google Scholar 

  25. Gorban, A.N., Mirkes, E.M., Yablonski, G.S.: Thermodynamics in the limit of irreversible reactions. Physica A 392(6), 1318–1335 (2013). https://doi.org/10.1016/j.physa.2012.10.009

    Article  MathSciNet  Google Scholar 

  26. Gorban, A.N., Yablonski, G.S.: Extended detailed balance for systems with irreversible reactions. Chem. Eng. Sci. 66(21), 5388–5399 (2011). https://doi.org/10.1016/j.ces.2011.07.054

    Article  Google Scholar 

  27. Grigoriev, D.: Complexity of deciding Tarski algebra. J. Symb. Comput. 5(1–2), 65–108 (1988). https://doi.org/10.1016/S0747-7171(88)80006-3

    Article  MathSciNet  MATH  Google Scholar 

  28. Grigoriev, D., Iosif, A., Rahkooy, H., Sturm, T., Weber, A.: Efficiently and effectively recognizing toricity of steady state varieties. Math. Comput. Sci. 15(2), 199–232 (2021). https://doi.org/10.1007/s11786-020-00479-9

    Article  MathSciNet  MATH  Google Scholar 

  29. Grigoriev, D., Milman, P.D.: Nash resolution for binomial varieties as Euclidean division. A priori termination bound, polynomial complexity in essential dimension 2. Adv. Math. 231(6), 3389–3428 (2012). https://doi.org/10.1016/j.aim.2012.08.009

    Article  MathSciNet  MATH  Google Scholar 

  30. Hearn, A.C.: Reduce: a user-oriented interactive system for algebraic simplification. In: Proceedings of the Symposium on Interactive Systems for Experimental Applied Mathematics. ACM (1967). https://doi.org/10.1145/2402536.2402544

  31. Hearn, A.C.: Reduce: the first forty years. In: Algorithmic Algebra and Logic: Proceedings of the A3L 2005, pp. 19–24. BOD, Norderstedt (2005)

    Google Scholar 

  32. Horn, F., Jackson, R.: General mass action kinetics. Arch. Rational Mech. Anal. 47(2), 81–116 (1972). https://doi.org/10.1007/BF00251225

    Article  MathSciNet  Google Scholar 

  33. Kahle, T.: Decompositions of binomial ideals. Ann. Inst. Stat. Math. 62(4), 727–745 (2010). https://doi.org/10.1007/s10463-010-0290-9

    Article  MathSciNet  MATH  Google Scholar 

  34. Kahle, T.: Decompositions of binomial ideals. J. Softw. Algebra Geom. 4(1), 1–5 (2012). https://doi.org/10.2140/jsag.2012.4.1

    Article  MathSciNet  MATH  Google Scholar 

  35. Košta, M.: New concepts for real quantifier elimination by virtual substitution. Doctoral dissertation, Saarland University, Germany (2016). https://doi.org/10.22028/D291-26679

  36. Košta, M., Sturm, T., Dolzmann, A.: Better answers to real questions. J. Symb. Comput. 74, 255–275 (2016). https://doi.org/10.1016/j.jsc.2015.07.002

    Article  MathSciNet  MATH  Google Scholar 

  37. Kruff, N., Lüders, C., Radulescu, O., Sturm, T., Walcher, S.: Algorithmic reduction of biological networks with multiple time scales. Math. Comput. Sci. 15(3), 499–534 (2021). https://doi.org/10.1007/s11786-021-00515-2

  38. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36(5), 450–462 (1993). https://doi.org/10.1093/comjnl/36.5.450

    Article  MathSciNet  MATH  Google Scholar 

  39. Michaelis, L., Menten, M.L.: Die Kinetik der Invertinwirkung. Biochemische Zeitschrift 49, 333–369 (1913)

    Google Scholar 

  40. Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A.: Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry. Found. Comput. Math. 16(1), 69–97 (2016). https://doi.org/10.1007/s10208-014-9239-3

    Article  MathSciNet  MATH  Google Scholar 

  41. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405 (1931). https://doi.org/10.1103/PhysRev.37.405

    Article  MATH  Google Scholar 

  42. Pérez Millán, M., Dickenstein, A.: The structure of MESSI biological systems. SIAM J. Appl. Dyn. Syst. 17(2), 1650–1682 (2018). https://doi.org/10.1137/17M1113722

    Article  MathSciNet  MATH  Google Scholar 

  43. Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems with toric steady states. Bull. Math. Biol. 74(5), 1027–1065 (2012). https://doi.org/10.1007/s11538-011-9685-x

    Article  MathSciNet  MATH  Google Scholar 

  44. Rahkooy, H., Radulescu, O., Sturm, T.: A linear algebra approach for detecting binomiality of steady state ideals of reversible chemical reaction networks. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 492–509. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_29

    Chapter  Google Scholar 

  45. Rahkooy, H., Sturm, T.: First-order tests for Toricity. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 510–527. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_30

    Chapter  Google Scholar 

  46. Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction networks. Science 327(5971), 1389–1391 (2010). https://doi.org/10.1126/science.1183372

    Article  Google Scholar 

  47. Strzebonski, A.W.: Cylindrical algebraic decomposition using validated numerics. J. Symb. Comput. 41(9), 1021–1038 (2006). https://doi.org/10.1016/j.jsc.2006.06.004

    Article  MathSciNet  MATH  Google Scholar 

  48. Sturm, T.: A survey of some methods for real quantifier elimination, decision, and satisfiability and their applications. Math. Comput. Sci. 11(3–4), 483–502 (2017). https://doi.org/10.1007/s11786-017-0319-z

    Article  MathSciNet  MATH  Google Scholar 

  49. Sturm, T.: Thirty years of virtual substitution: foundations, techniques, applications. In: Proceedings of the ISSAC 2018, pp. 11–16. ACM (2018). https://doi.org/10.1145/3208976.3209030

  50. Tarski, A.: A decision method for elementary algebra and geometry. Prepared for publication by J.C.C. McKinsey. RAND Report R109, 1 August 1948, Revised May 1951, Second Edition, RAND, Santa Monica, CA (1957)

    Google Scholar 

  51. Tonks, Z.: A poly-algorithmic quantifier elimination package in maple. In: Gerhard, J., Kotsireas, I. (eds.) MC 2019. CCIS, vol. 1125, pp. 171–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41258-6_13

    Chapter  Google Scholar 

  52. Vilar, J.M.G., Jansen, R., Sander, C.: Signal processing in the TGF-\(\beta \) superfamily ligand-receptor network. PLoS Comput. Biol. 2(1), e3 (2006). https://doi.org/10.1371/journal.pcbi.0020003

    Article  Google Scholar 

  53. Wang, L., Sontag, E.D.: On the number of steady states in a multiple futile cycle. J. Math. Biol. 57(1), 29–52 (2008). https://doi.org/10.1007/s00285-007-0145-z

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, S., Lin, J.R., Sontag, E.D., Sorger, P.K.: Inferring reaction network structure from single-cell, multiplex data, using toric systems theory. PLoS Comput. Biol. 15(12), e1007311 (2019). https://doi.org/10.1371/journal.pcbi.1007311

    Article  Google Scholar 

  55. Wegscheider, R.: Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme. Monatsh. Chem. Verw. Tl. 22(8), 849–906 (1901). https://doi.org/10.1007/BF01517498

    Article  MATH  Google Scholar 

  56. Weispfenning, V.: Quantifier elimination for real algebra–the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997). https://doi.org/10.1007/s002000050055

    Article  MathSciNet  MATH  Google Scholar 

  57. Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation (A Series of the Research Institute for Symbolic Computation, Johannes-Kepler-University, Linz, Austria), pp. 376–392. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-9459-1_20

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by the interdisciplinary bilateral project ANR-17-CE40-0036/DFG-391322026 SYMBIONT [3, 4]. We are grateful to our project partner Ovidiu Radulescu for helping us understand part of the biological background.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Sturm .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 1923 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahkooy, H., Sturm, T. (2021). Parametric Toricity of Steady State Varieties of Reaction Networks. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2021. Lecture Notes in Computer Science(), vol 12865. Springer, Cham. https://doi.org/10.1007/978-3-030-85165-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85165-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85164-4

  • Online ISBN: 978-3-030-85165-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics