Abstract
We study real steady state varieties of the dynamics of chemical reaction networks. The dynamics are derived using mass action kinetics with parametric reaction rates. The models studied are not inherently parametric in nature. Rather, our interest in parameters is motivated by parameter uncertainty, as reaction rates are typically either measured with limited precision or estimated. We aim at detecting toricity and shifted toricity, using a framework that has been recently introduced and studied for the non-parametric case over both the real and the complex numbers. While toricity requires that the variety specifies a subgroup of the direct power of the multiplicative group of the underlying field, shifted toricity requires only a coset. In the non-parametric case these requirements establish real decision problems. In the presence of parameters we must go further and derive necessary and sufficient conditions in the parameters for toricity or shifted toricity to hold. Technically, we use real quantifier elimination methods. Our computations on biological networks here once more confirm shifted toricity as a relevant concept, while toricity holds only for degenerate parameter choices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Alternatively, one could temporarily introduce constants \(\mathbf {k}\) and state equivalence in an extended theory of real closed fields: \({\text {Th}}(\mathbb {R}) \cup \{\mathbf {k}>0\} \,\models \, \varphi \longleftrightarrow \varphi '\). This point of view is common in algebraic model theory and has been taken in [14].
- 2.
- 3.
- 4.
i.e., the ones with “\(\emptyset \)” on their left hand side or right hand side, respectively.
- 5.
References
Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity of quantifier elimination. J. ACM 43(6), 1002–1045 (1996). https://doi.org/10.1145/235809.235813
Boltzmann, L.: Lectures on Gas Theory. University of California Press, Berkeley and Los Angeles (1964)
Boulier, F., et al.: The SYMBIONT project: symbolic methods for biological networks. ACM Commun. Comput. Algebra 52(3), 67–70 (2018). https://doi.org/10.1145/3313880.3313885
Boulier, F., et al.: The SYMBIONT project: symbolic methods for biological networks. F1000Research 7(1341) (2018). https://doi.org/10.7490/f1000research.1115995.1
Bradford, R., et al.: A case study on the parametric occurrence of multiple steady states. In: Proceedings of the ISSAC 2017, pp. 45–52. ACM (2017). https://doi.org/10.1145/3087604.3087622
Bradford, R., et al.: Identifying the parametric occurrence of multiple steady states for some biological networks. J. Symb. Comput. 98, 84–119 (2020). https://doi.org/10.1016/j.jsc.2019.07.008
Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003). https://doi.org/10.1145/968708.968710
Chelliah, V., et al.: BioModels: ten-year anniversary. Nucl. Acids Res. 43(D1), D542–D548 (2015). https://doi.org/10.1093/nar/gku1181
Chen, C., Moreno Maza, M.: Quantifier elimination by cylindrical algebraic decomposition based on regular chains. J. Symb. Comput. 75, 74–93 (2016). https://doi.org/10.1016/j.jsc.2015.11.008
Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991). https://doi.org/10.1016/S0747-7171(08)80152-6
Conradi, C., Kahle, T.: Detecting binomiality. Adv. Appl. Math. 71, 52–67 (2015). https://doi.org/10.1016/j.aam.2015.08.004
Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J. Symb. Comput. 44(11), 1551–1565 (2009). https://doi.org/10.1016/j.jsc.2008.08.006
Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic. ACM SIGSAM Bull. 31(2), 2–9 (1997). https://doi.org/10.1145/261320.261324
Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered fields. J. Symb. Comput. 24(2), 209–231 (1997). https://doi.org/10.1006/jsco.1997.0123
Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. In: Matzat, B.H., Greuel, G.M., Hiss, G. (eds.) Algorithmic Algebra and Number Theory, pp. 221–247. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-642-59932-3_11
Edelstein, S.J., Schaad, O., Henry, E., Bertrand, D., Changeux, J.P.: A kinetic mechanism for nicotinic acetylcholine receptors based on multiple allosteric transitions. Biol. Cybern. 75(5), 361–379 (1996). https://doi.org/10.1007/s004220050302
Einstein, A.: Strahlungs-emission und -absorption nach der Quantentheorie. Verh. Dtsch. Phys. Ges. 18, 318–323 (1916)
Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Math. J. 84(1), 1–45 (1996). https://doi.org/10.1215/S0012-7094-96-08401-X
England, M., Errami, H., Grigoriev, D., Radulescu, O., Sturm, T., Weber, A.: Symbolic versus numerical computation and visualization of parameter regions for multistationarity of biological networks. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 93–108. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_8
Feinberg, M.: Complex balancing in general kinetic systems. Arch. Rational Mech. Anal. 49(3), 187–194 (1972). https://doi.org/10.1007/BF00255665
Feinberg, M.: Stability of complex isothermal reactors–I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42(10), 2229–2268 (1987). https://doi.org/10.1016/0009-2509(87)80099-4
Feinberg, M.: Foundations of Chemical Reaction Network Theory. AMS, vol. 202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03858-8
Gatermann, K.: Counting stable solutions of sparse polynomial systems in chemistry. In: Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, Contemporary Mathematics, vol. 286, pp. 53–69. AMS, Providence (2001). https://doi.org/10.1090/conm/286/04754
Gatermann, K., Wolfrum, M.: Bernstein’s second theorem and Viro’s method for sparse polynomial systems in chemistry. Adv. Appl. Math. 34(2), 252–294 (2005). https://doi.org/10.1016/j.aam.2004.04.003
Gorban, A.N., Mirkes, E.M., Yablonski, G.S.: Thermodynamics in the limit of irreversible reactions. Physica A 392(6), 1318–1335 (2013). https://doi.org/10.1016/j.physa.2012.10.009
Gorban, A.N., Yablonski, G.S.: Extended detailed balance for systems with irreversible reactions. Chem. Eng. Sci. 66(21), 5388–5399 (2011). https://doi.org/10.1016/j.ces.2011.07.054
Grigoriev, D.: Complexity of deciding Tarski algebra. J. Symb. Comput. 5(1–2), 65–108 (1988). https://doi.org/10.1016/S0747-7171(88)80006-3
Grigoriev, D., Iosif, A., Rahkooy, H., Sturm, T., Weber, A.: Efficiently and effectively recognizing toricity of steady state varieties. Math. Comput. Sci. 15(2), 199–232 (2021). https://doi.org/10.1007/s11786-020-00479-9
Grigoriev, D., Milman, P.D.: Nash resolution for binomial varieties as Euclidean division. A priori termination bound, polynomial complexity in essential dimension 2. Adv. Math. 231(6), 3389–3428 (2012). https://doi.org/10.1016/j.aim.2012.08.009
Hearn, A.C.: Reduce: a user-oriented interactive system for algebraic simplification. In: Proceedings of the Symposium on Interactive Systems for Experimental Applied Mathematics. ACM (1967). https://doi.org/10.1145/2402536.2402544
Hearn, A.C.: Reduce: the first forty years. In: Algorithmic Algebra and Logic: Proceedings of the A3L 2005, pp. 19–24. BOD, Norderstedt (2005)
Horn, F., Jackson, R.: General mass action kinetics. Arch. Rational Mech. Anal. 47(2), 81–116 (1972). https://doi.org/10.1007/BF00251225
Kahle, T.: Decompositions of binomial ideals. Ann. Inst. Stat. Math. 62(4), 727–745 (2010). https://doi.org/10.1007/s10463-010-0290-9
Kahle, T.: Decompositions of binomial ideals. J. Softw. Algebra Geom. 4(1), 1–5 (2012). https://doi.org/10.2140/jsag.2012.4.1
Košta, M.: New concepts for real quantifier elimination by virtual substitution. Doctoral dissertation, Saarland University, Germany (2016). https://doi.org/10.22028/D291-26679
Košta, M., Sturm, T., Dolzmann, A.: Better answers to real questions. J. Symb. Comput. 74, 255–275 (2016). https://doi.org/10.1016/j.jsc.2015.07.002
Kruff, N., Lüders, C., Radulescu, O., Sturm, T., Walcher, S.: Algorithmic reduction of biological networks with multiple time scales. Math. Comput. Sci. 15(3), 499–534 (2021). https://doi.org/10.1007/s11786-021-00515-2
Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36(5), 450–462 (1993). https://doi.org/10.1093/comjnl/36.5.450
Michaelis, L., Menten, M.L.: Die Kinetik der Invertinwirkung. Biochemische Zeitschrift 49, 333–369 (1913)
Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A.: Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry. Found. Comput. Math. 16(1), 69–97 (2016). https://doi.org/10.1007/s10208-014-9239-3
Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405 (1931). https://doi.org/10.1103/PhysRev.37.405
Pérez Millán, M., Dickenstein, A.: The structure of MESSI biological systems. SIAM J. Appl. Dyn. Syst. 17(2), 1650–1682 (2018). https://doi.org/10.1137/17M1113722
Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems with toric steady states. Bull. Math. Biol. 74(5), 1027–1065 (2012). https://doi.org/10.1007/s11538-011-9685-x
Rahkooy, H., Radulescu, O., Sturm, T.: A linear algebra approach for detecting binomiality of steady state ideals of reversible chemical reaction networks. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 492–509. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_29
Rahkooy, H., Sturm, T.: First-order tests for Toricity. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 510–527. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_30
Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction networks. Science 327(5971), 1389–1391 (2010). https://doi.org/10.1126/science.1183372
Strzebonski, A.W.: Cylindrical algebraic decomposition using validated numerics. J. Symb. Comput. 41(9), 1021–1038 (2006). https://doi.org/10.1016/j.jsc.2006.06.004
Sturm, T.: A survey of some methods for real quantifier elimination, decision, and satisfiability and their applications. Math. Comput. Sci. 11(3–4), 483–502 (2017). https://doi.org/10.1007/s11786-017-0319-z
Sturm, T.: Thirty years of virtual substitution: foundations, techniques, applications. In: Proceedings of the ISSAC 2018, pp. 11–16. ACM (2018). https://doi.org/10.1145/3208976.3209030
Tarski, A.: A decision method for elementary algebra and geometry. Prepared for publication by J.C.C. McKinsey. RAND Report R109, 1 August 1948, Revised May 1951, Second Edition, RAND, Santa Monica, CA (1957)
Tonks, Z.: A poly-algorithmic quantifier elimination package in maple. In: Gerhard, J., Kotsireas, I. (eds.) MC 2019. CCIS, vol. 1125, pp. 171–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41258-6_13
Vilar, J.M.G., Jansen, R., Sander, C.: Signal processing in the TGF-\(\beta \) superfamily ligand-receptor network. PLoS Comput. Biol. 2(1), e3 (2006). https://doi.org/10.1371/journal.pcbi.0020003
Wang, L., Sontag, E.D.: On the number of steady states in a multiple futile cycle. J. Math. Biol. 57(1), 29–52 (2008). https://doi.org/10.1007/s00285-007-0145-z
Wang, S., Lin, J.R., Sontag, E.D., Sorger, P.K.: Inferring reaction network structure from single-cell, multiplex data, using toric systems theory. PLoS Comput. Biol. 15(12), e1007311 (2019). https://doi.org/10.1371/journal.pcbi.1007311
Wegscheider, R.: Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme. Monatsh. Chem. Verw. Tl. 22(8), 849–906 (1901). https://doi.org/10.1007/BF01517498
Weispfenning, V.: Quantifier elimination for real algebra–the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997). https://doi.org/10.1007/s002000050055
Weispfenning, V.: A new approach to quantifier elimination for real algebra. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation (A Series of the Research Institute for Symbolic Computation, Johannes-Kepler-University, Linz, Austria), pp. 376–392. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-9459-1_20
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Rahkooy, H., Sturm, T. (2021). Parametric Toricity of Steady State Varieties of Reaction Networks. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2021. Lecture Notes in Computer Science(), vol 12865. Springer, Cham. https://doi.org/10.1007/978-3-030-85165-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-85165-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85164-4
Online ISBN: 978-3-030-85165-1
eBook Packages: Computer ScienceComputer Science (R0)