Abstract
We show that several types of graph drawing in the hyperbolic plane require features of the drawing to be separated from each other by sub-constant distances, distances so small that they can be accurately approximated by Euclidean distance. Therefore, for these types of drawing, hyperbolic geometry provides no benefit over Euclidean graph drawing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barequet, G., Goodrich, M.T., Riley, C.: Drawing planar graphs with large vertices and thick edges. J. Graph Algorithms Appl. 8, 3–20 (2004). https://doi.org/10.7155/jgaa.00078
Bennett, A.G.: Hyperbolic geometry. J. Online Math. Appl. 31, 2 (2001). https://www.maa.org/press/periodicals/loci/joma/hyperbolic-geometry-introduction
Bern, M., Eppstein, D.: Optimal Möbius transformations for information visualization and meshing. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 14–25. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44634-6_3
Bläsius, T., Friedrich, T., Katzmann, M., Krohmer, A.: Hyperbolic embeddings for near-optimal greedy routing. ACM J. Exp. Algorithmics 25(A1.3), 1–18 (2020). https://doi.org/10.1145/3381751
Bläsius, T., Friedrich, T., Krohmer, A., Laue, S.: Efficient embedding of scale-free graphs in the hyperbolic plane. IEEE/ACM Trans. Netw. 26(2), 920–933 (2018). https://doi.org/10.1109/TNET.2018.2810186
Brandenburg, F.J.: Drawing planar graphs on \(\tfrac{8}{9} n^2\) area. In: Proceedings of the International Conference on Topological and Geometric Graph Theory. Electronic Notes in Discrete Mathematics, vol. 31, pp. 37–40 (2008). https://doi.org/10.1016/j.endm.2008.06.005
Coudert, D., Ducoffe, G.: A simple approach for lower-bounding the distortion in any Hyperbolic embedding. In: Drmota, M., Kang, M., Krattenthaler, C., Nešetřil, J. (eds.) Proceedings of European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB 2017). Electronic Notes in Discrete Mathematics, vol. 61, pp. 293–299 (2017). https://doi.org/10.1016/j.endm.2017.06.051
Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011)
Dolev, D., Leighton, F.T., Trickey, H.: Planar embedding of planar graphs. Adv. Comput. Res. 2, 147–161 (1984). https://noodle.cs.huji.ac.il/~dolev/pubs/planar-embed.pdf
Duncan, C.A., Efrat, A., Kobourov, S.G., Wenk, C.: Drawing with fat edges. Int. J. Found. Comput. Sci. 17(5), 1143–1164 (2006). https://doi.org/10.1142/S0129054106004315
Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi drawings of graphs. J. Graph Algorithms Appl. 16(1), 85–108 (2012). https://doi.org/10.7155/jgaa.00251
Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Drawing trees with perfect angular resolution and polynomial area. Discret. Comput. Geom. 49(2), 157–182 (2012). https://doi.org/10.1007/s00454-012-9472-y
Eklund, P.W., Roberts, N., Green, S.: OntoRama: browsing RDF ontologies using a hyperbolic-style browser. In: Proceedings of the 1st International Symposium on Cyber Worlds (CW 2002), pp. 405–411. IEEE Computer Society (2002). https://doi.org/10.1109/CW.2002.1180907
Eppstein, D.: A Möbius-invariant power diagram and its applications to soap bubbles and planar Lombardi drawing. Discret. Comput. Geom. 52(3), 515–550 (2014). https://doi.org/10.1007/s00454-014-9627-0
Eppstein, D., Goodrich, M.T.: Succinct greedy geometric routing using hyperbolic geometry. IEEE Trans. Comput. 60(11), 1571–1580 (2011). https://doi.org/10.1109/TC.2010.257
Formann, M., et al.: Drawing graphs in the plane with high resolution. SIAM J. Comput. 22(5), 1035–1052 (1993). https://doi.org/10.1137/0222063
de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990). https://doi.org/10.1007/BF02122694
Garg, A., Tamassia, R.: Planar drawings and angular resolution: algorithms and bounds. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 12–23. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0049393
Kleinberg, R.: Geographic routing using hyperbolic space. In: Proceedings of the 26th IEEE International Conference on Computer Communications (INFOCOM 2007), pp. 1902–1909. IEEE (2007). https://doi.org/10.1109/INFCOM.2007.221
Kobourov, S.G., Wampler, K.: Non-Euclidean spring embedders. IEEE Trans. Vis. Comput. Graph. 11(6), 757–767 (2005). https://doi.org/10.1109/TVCG.2005.103
van Kreveld, M.J.: Bold graph drawings. Comput. Geom. 44(9), 499–506 (2011). https://doi.org/10.1016/j.comgeo.2011.06.002
Lamping, J., Rao, R.: The hyperbolic browser: a focus + context technique for visualizing large hierarchies. J. Vis. Lang. Comput. 7(1), 33–55 (1996). https://doi.org/10.1006/jvlc.1996.0003
Malitz, S., Papakostas, A.: On the angular resolution of planar graphs. SIAM J. Discret. Math. 7(2), 172–183 (1994). https://doi.org/10.1137/S0895480193242931
Martin, G.E.: The Foundations of Geometry and the Non-Euclidean Plane. Undergraduate Texts in Mathematics. Springer, Heidelberg (1982). https://doi.org/10.1007/978-1-4612-5725-7
Mohar, B.: Drawing graphs in the hyperbolic plane. In: KratochvÃyl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 127–136. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46648-7_13
Munzner, T.: H3: laying out large directed graphs in 3D hyperbolic space. In: Proceedings of the 1997 IEEE Symposium on Information Visualization (InfoVis 1997), pp. 2–10. IEEE Computer Society (1997). https://doi.org/10.1109/INFVIS.1997.636718
Munzner, T.: Exploring large graphs in 3D hyperbolic space. IEEE Comput. Graph. Appl. 18(4), 18–23 (1998). https://doi.org/10.1109/38.689657
Munzner, T., Burchard, P.: Visualizing the structure of the world wide web in 3D hyperbolic space. In: Nadeau, D.R., Moreland, J.L. (eds.) Proceedings of the 1995 Symposium on Virtual Reality Modeling Language (VRML 1995), pp. 33–38. ACM (1995). https://doi.org/10.1145/217306.217311
Pach, J.: Every graph admits an unambiguous bold drawing. J. Graph Algorithms Appl. 19(1), 299–312 (2015). https://doi.org/10.7155/jgaa.00359
Petrunin, A.: Euclidean Plane and its Relatives; a Minimalist Introduction, 3rd edn. CreateSpace (December 2020). https://arxiv.org/abs/1302.1630v18
Sala, F., De Sa, C., Gu, A., Ré, C.: Representation tradeoffs for hyperbolic embeddings. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning (ICML 2018). Proceedings of Machine Learning Research, vol. 80, pp. 4457–4466. ML Research Press (2018). https://proceedings.mlr.press/v80/sala18a.html
Sarkar, R.: Low distortion delaunay embedding of trees in hyperbolic plane. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 355–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25878-7_34
Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA 1990), pp. 138–148 (1990). https://dl.acm.org/citation.cfm?id=320176.320191
Suzuki, R., Takahama, R., Onoda, S.: Hyperbolic disk embeddings for directed acyclic graphs. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6066–6075. ML Research Press (2019). https://proceedings.mlr.press/v97/suzuki19a.html
Türker, U.C., Balcisoy, S.: A visualisation technique for large temporal social network datasets in hyperbolic space. J. Vis. Lang. Comput. 25(3), 227–242 (2014). https://doi.org/10.1016/j.jvlc.2013.10.008
Verbeek, K., Suri, S.: Metric embedding, hyperbolic space, and social networks. Comput. Geom. 59, 1–12 (2016). https://doi.org/10.1016/j.comgeo.2016.08.003
Walter, J.A.: H-MDS: a new approach for interactive visualization with multidimensional scaling in the hyperbolic space. Inf. Syst. 29(4), 273–292 (2004). https://doi.org/10.1016/j.is.2003.10.002
Walter, J.A., Ritter, H.J.: On interactive visualization of high-dimensional data using the hyperbolic plane. In: Proceedings of the 8th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD 2002), pp. 123–132. ACM (2002). https://doi.org/10.1145/775047.775065
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Eppstein, D. (2021). Limitations on Realistic Hyperbolic Graph Drawing. In: Purchase, H.C., Rutter, I. (eds) Graph Drawing and Network Visualization. GD 2021. Lecture Notes in Computer Science(), vol 12868. Springer, Cham. https://doi.org/10.1007/978-3-030-92931-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-92931-2_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92930-5
Online ISBN: 978-3-030-92931-2
eBook Packages: Computer ScienceComputer Science (R0)