Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Limitations on Realistic Hyperbolic Graph Drawing

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12868))

Included in the following conference series:

Abstract

We show that several types of graph drawing in the hyperbolic plane require features of the drawing to be separated from each other by sub-constant distances, distances so small that they can be accurately approximated by Euclidean distance. Therefore, for these types of drawing, hyperbolic geometry provides no benefit over Euclidean graph drawing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barequet, G., Goodrich, M.T., Riley, C.: Drawing planar graphs with large vertices and thick edges. J. Graph Algorithms Appl. 8, 3–20 (2004). https://doi.org/10.7155/jgaa.00078

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennett, A.G.: Hyperbolic geometry. J. Online Math. Appl. 31, 2 (2001). https://www.maa.org/press/periodicals/loci/joma/hyperbolic-geometry-introduction

  3. Bern, M., Eppstein, D.: Optimal Möbius transformations for information visualization and meshing. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 14–25. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44634-6_3

    Chapter  MATH  Google Scholar 

  4. Bläsius, T., Friedrich, T., Katzmann, M., Krohmer, A.: Hyperbolic embeddings for near-optimal greedy routing. ACM J. Exp. Algorithmics 25(A1.3), 1–18 (2020). https://doi.org/10.1145/3381751

  5. Bläsius, T., Friedrich, T., Krohmer, A., Laue, S.: Efficient embedding of scale-free graphs in the hyperbolic plane. IEEE/ACM Trans. Netw. 26(2), 920–933 (2018). https://doi.org/10.1109/TNET.2018.2810186

    Article  MATH  Google Scholar 

  6. Brandenburg, F.J.: Drawing planar graphs on \(\tfrac{8}{9} n^2\) area. In: Proceedings of the International Conference on Topological and Geometric Graph Theory. Electronic Notes in Discrete Mathematics, vol. 31, pp. 37–40 (2008). https://doi.org/10.1016/j.endm.2008.06.005

  7. Coudert, D., Ducoffe, G.: A simple approach for lower-bounding the distortion in any Hyperbolic embedding. In: Drmota, M., Kang, M., Krattenthaler, C., Nešetřil, J. (eds.) Proceedings of European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB 2017). Electronic Notes in Discrete Mathematics, vol. 61, pp. 293–299 (2017). https://doi.org/10.1016/j.endm.2017.06.051

  8. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011)

    Article  MathSciNet  Google Scholar 

  9. Dolev, D., Leighton, F.T., Trickey, H.: Planar embedding of planar graphs. Adv. Comput. Res. 2, 147–161 (1984). https://noodle.cs.huji.ac.il/~dolev/pubs/planar-embed.pdf

  10. Duncan, C.A., Efrat, A., Kobourov, S.G., Wenk, C.: Drawing with fat edges. Int. J. Found. Comput. Sci. 17(5), 1143–1164 (2006). https://doi.org/10.1142/S0129054106004315

    Article  MathSciNet  MATH  Google Scholar 

  11. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi drawings of graphs. J. Graph Algorithms Appl. 16(1), 85–108 (2012). https://doi.org/10.7155/jgaa.00251

    Article  MathSciNet  MATH  Google Scholar 

  12. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Drawing trees with perfect angular resolution and polynomial area. Discret. Comput. Geom. 49(2), 157–182 (2012). https://doi.org/10.1007/s00454-012-9472-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Eklund, P.W., Roberts, N., Green, S.: OntoRama: browsing RDF ontologies using a hyperbolic-style browser. In: Proceedings of the 1st International Symposium on Cyber Worlds (CW 2002), pp. 405–411. IEEE Computer Society (2002). https://doi.org/10.1109/CW.2002.1180907

  14. Eppstein, D.: A Möbius-invariant power diagram and its applications to soap bubbles and planar Lombardi drawing. Discret. Comput. Geom. 52(3), 515–550 (2014). https://doi.org/10.1007/s00454-014-9627-0

    Article  MATH  Google Scholar 

  15. Eppstein, D., Goodrich, M.T.: Succinct greedy geometric routing using hyperbolic geometry. IEEE Trans. Comput. 60(11), 1571–1580 (2011). https://doi.org/10.1109/TC.2010.257

    Article  MathSciNet  MATH  Google Scholar 

  16. Formann, M., et al.: Drawing graphs in the plane with high resolution. SIAM J. Comput. 22(5), 1035–1052 (1993). https://doi.org/10.1137/0222063

    Article  MathSciNet  MATH  Google Scholar 

  17. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990). https://doi.org/10.1007/BF02122694

    Article  MathSciNet  MATH  Google Scholar 

  18. Garg, A., Tamassia, R.: Planar drawings and angular resolution: algorithms and bounds. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 12–23. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0049393

    Chapter  Google Scholar 

  19. Kleinberg, R.: Geographic routing using hyperbolic space. In: Proceedings of the 26th IEEE International Conference on Computer Communications (INFOCOM 2007), pp. 1902–1909. IEEE (2007). https://doi.org/10.1109/INFCOM.2007.221

  20. Kobourov, S.G., Wampler, K.: Non-Euclidean spring embedders. IEEE Trans. Vis. Comput. Graph. 11(6), 757–767 (2005). https://doi.org/10.1109/TVCG.2005.103

    Article  Google Scholar 

  21. van Kreveld, M.J.: Bold graph drawings. Comput. Geom. 44(9), 499–506 (2011). https://doi.org/10.1016/j.comgeo.2011.06.002

    Article  MathSciNet  MATH  Google Scholar 

  22. Lamping, J., Rao, R.: The hyperbolic browser: a focus + context technique for visualizing large hierarchies. J. Vis. Lang. Comput. 7(1), 33–55 (1996). https://doi.org/10.1006/jvlc.1996.0003

    Article  Google Scholar 

  23. Malitz, S., Papakostas, A.: On the angular resolution of planar graphs. SIAM J. Discret. Math. 7(2), 172–183 (1994). https://doi.org/10.1137/S0895480193242931

    Article  MathSciNet  MATH  Google Scholar 

  24. Martin, G.E.: The Foundations of Geometry and the Non-Euclidean Plane. Undergraduate Texts in Mathematics. Springer, Heidelberg (1982). https://doi.org/10.1007/978-1-4612-5725-7

  25. Mohar, B.: Drawing graphs in the hyperbolic plane. In: Kratochvíyl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 127–136. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46648-7_13

    Chapter  MATH  Google Scholar 

  26. Munzner, T.: H3: laying out large directed graphs in 3D hyperbolic space. In: Proceedings of the 1997 IEEE Symposium on Information Visualization (InfoVis 1997), pp. 2–10. IEEE Computer Society (1997). https://doi.org/10.1109/INFVIS.1997.636718

  27. Munzner, T.: Exploring large graphs in 3D hyperbolic space. IEEE Comput. Graph. Appl. 18(4), 18–23 (1998). https://doi.org/10.1109/38.689657

    Article  Google Scholar 

  28. Munzner, T., Burchard, P.: Visualizing the structure of the world wide web in 3D hyperbolic space. In: Nadeau, D.R., Moreland, J.L. (eds.) Proceedings of the 1995 Symposium on Virtual Reality Modeling Language (VRML 1995), pp. 33–38. ACM (1995). https://doi.org/10.1145/217306.217311

  29. Pach, J.: Every graph admits an unambiguous bold drawing. J. Graph Algorithms Appl. 19(1), 299–312 (2015). https://doi.org/10.7155/jgaa.00359

    Article  MathSciNet  MATH  Google Scholar 

  30. Petrunin, A.: Euclidean Plane and its Relatives; a Minimalist Introduction, 3rd edn. CreateSpace (December 2020). https://arxiv.org/abs/1302.1630v18

  31. Sala, F., De Sa, C., Gu, A., Ré, C.: Representation tradeoffs for hyperbolic embeddings. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning (ICML 2018). Proceedings of Machine Learning Research, vol. 80, pp. 4457–4466. ML Research Press (2018). https://proceedings.mlr.press/v80/sala18a.html

  32. Sarkar, R.: Low distortion delaunay embedding of trees in hyperbolic plane. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 355–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25878-7_34

    Chapter  Google Scholar 

  33. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA 1990), pp. 138–148 (1990). https://dl.acm.org/citation.cfm?id=320176.320191

  34. Suzuki, R., Takahama, R., Onoda, S.: Hyperbolic disk embeddings for directed acyclic graphs. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6066–6075. ML Research Press (2019). https://proceedings.mlr.press/v97/suzuki19a.html

  35. Türker, U.C., Balcisoy, S.: A visualisation technique for large temporal social network datasets in hyperbolic space. J. Vis. Lang. Comput. 25(3), 227–242 (2014). https://doi.org/10.1016/j.jvlc.2013.10.008

    Article  Google Scholar 

  36. Verbeek, K., Suri, S.: Metric embedding, hyperbolic space, and social networks. Comput. Geom. 59, 1–12 (2016). https://doi.org/10.1016/j.comgeo.2016.08.003

    Article  MathSciNet  MATH  Google Scholar 

  37. Walter, J.A.: H-MDS: a new approach for interactive visualization with multidimensional scaling in the hyperbolic space. Inf. Syst. 29(4), 273–292 (2004). https://doi.org/10.1016/j.is.2003.10.002

    Article  Google Scholar 

  38. Walter, J.A., Ritter, H.J.: On interactive visualization of high-dimensional data using the hyperbolic plane. In: Proceedings of the 8th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD 2002), pp. 123–132. ACM (2002). https://doi.org/10.1145/775047.775065

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eppstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eppstein, D. (2021). Limitations on Realistic Hyperbolic Graph Drawing. In: Purchase, H.C., Rutter, I. (eds) Graph Drawing and Network Visualization. GD 2021. Lecture Notes in Computer Science(), vol 12868. Springer, Cham. https://doi.org/10.1007/978-3-030-92931-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92931-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92930-5

  • Online ISBN: 978-3-030-92931-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics