Abstract
Building on George Boole’s work, Logic provides a rigorous foundation for the powerful tools in Computer Science that underlie nowadays ubiquitous processing of discrete data, such as strings or graphs. Concerning continuous data, already Alan Turing had applied “his” machines to formalize and study the processing of real numbers: an aspect of his oeuvre that we transform from theory to practice.
The present essay surveys the state of the art and envisions the future of Computer Science for continuous data: natively, beyond brute-force discretization, based on and guided by and extending classical discrete Computer Science, as bridge between Pure and Applied Mathematics.
This work was supported by the National Research Foundation of Korea (grant 2017R1E1A1A03071032) and by the International Research & Development Program of the Korean Ministry of Science and ICT (grant 2016K1A3A7A03950702) and by the European Union’s Horizon 2020 MSCA IRSES project #731143.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Arguably this also applies to the discrete case, where every function is trivially continuous.
- 2.
One could replace it with some real error bound \(\varepsilon >0\).
- 3.
Without the second-order property of being topologically complete.
References
Ambos-Spies, K., Brandt, U., Ziegler, M.: Real benefit of promises and advice. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 1–11. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39053-1_1
Avigad, J., Yin, Y.: Quantifier elimination for the reals with a predicate for the powers of two. Theor. Comput. Sci. 370(1–3), 48–59 (2007). https://doi.org/10.1016/j.tcs.2006.10.005
Bauer, A.: Clerical. https://github.com/andrejbauer/clerical (2017)
Boldo, S., Jourdan, J.H., Leroy, X., Melquiond, G.: Verified compilation of floating-point computations. J. Autom. Reason. 54(2), 135–163 (2015)
Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Challenge. SIAM (2004). http://www.siam.org/books/100digitchallenge/
Brattka, V.: The emperor’s new recursiveness: the epigraph of the exponential function in two models of computability. In: Ito, M., Imaoka, T. (eds.) Words, Languages & Combinatorics III, pp. 63–72. World Scientific Publishing, Singapore (2003), iCWLC 2000, Kyoto, Japan, March 14–18 (2000)
Brattka, V., Hertling, P.: Feasible real random access machines. J. Complex. 14(4), 490–526 (1998)
Brattka, V., Pauly, A.: Computation with advice. In: Zheng, X., Zhong, N. (eds.) CCA 2010, Proceedings of the Seventh International Conference on Computability and Complexity in Analysis. Electronic Proceedings in Theoretical Computer Science, vol. 24, pp. 41–55 (2010)
Brattka, V., Schröder, M.: Computing with sequences, weak topologies and the axiom of choice. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 462–476. Springer, Heidelberg (2005). https://doi.org/10.1007/11538363_32
Brauße, F., et al.: Semantics, logic, and verification of “exact real computation". Tech. rep., arXiv (2021)
Braverman, M., Cook, S.A.: Computing over the reals: foundations for scientific computing. Notice AMS 53(3), 318–329 (2006)
Cho, J., Park, S., Ziegler, M.: Computing periods \({\ldots }\). In: Proceedings of the WALCOM: Algorithms and Computation - 12th International Conference, WALCOM 2018, Dhaka, Bangladesh, 3–5 March 2018, pp. 132–143 (2018). https://doi.org/10.1007/978-3-319-75172-6_12
Cook, S.A.: Soundness and completeness of an axiom system for program verification. SIAM J. Comput. 7(1), 70–90 (1978). https://doi.org/10.1137/0207005
Dries, L.v.d.: The field of reals with a predicate for the powers of two. Manus. Math.54, 187–196 (1986), http://eudml.org/doc/155108
Dyer, M.E., Frieze, A.M., Kannan, R.: A random polynomial time algorithm for approximating the volume of convex bodies. J. ACM 38(1), 1–17 (1991). https://doi.org/10.1145/102782.102783
Férée, H., Ziegler, M.: On the computational complexity of positive linear functionals on \(\cal{C}[0;1]\). In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 489–504. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32859-1_42
Friedman, H.: The computational complexity of maximization and integration. Adv. Math. 53, 80–98 (1984). https://doi.org/10.1016/0001-8708(84)90019-7
Giga, Y., Miyakawa, T.: Solutions in \(l^r\) of the Navier-stokes initial value problem. Arch. Ration. Mech. Anal. 89(3), 267–281 (1985)
Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290. Springer, Heidelberg (2006). https://doi.org/10.1007/11685654_12
Hertling, P.: Topological complexity with continuous operations. J. Complex. 12, 315–338 (1996). https://doi.org/10.1006/jcom.1996.0021
Hertling, P.: Is the Mandelbrot set computable? Math. Log. Q. 51(1), 5–18 (2005)
Hertling, P., Spandl, C.: Computing a solution of Feigenbaum’s functional equation in polynomial time. Log. Methods Comput. Sci. 10(4), 4:7, 9 (2014). https://doi.org/10.2168/LMCS-10(4:7)2014
Hida, Y., Li, X.S., Bailey, D.H.: Library for double-double and quad-double arithmetic. Tech. rep, Lawrence Berkeley National Laboratory (2007)
Hoyrup, M., Rute, J.: Computable measure theory and algorithmic randomness. In: Handbook of Computability and Complexity in Analysis. TAC, pp. 227–270. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-59234-9_7
Jiman, H.: Real computation: from computability via efficiency to practice. M.sc. thesis, School of Computing (2021)
Kanada, Y.J.: . Math. Cult. 1(1), 72–83 (2003). Calculation of circumferential ratio by computer
Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-space complete. Comput. Complex. 19(2), 305–332 (2010). https://doi.org/10.1007/s00037-010-0286-0
Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational benefit of smoothness: parameterized bit-complexity of numerical operators on analytic functions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714 (2015). https://doi.org/10.1016/j.jco.2015.05.001
Kawamura, A., Steinberg, F., Ziegler, M.: Towards computational complexity theory on advanced function spaces in analysis. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709, pp. 142–152. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40189-8_15
Kawamura, A., Steinberg, F., Ziegler, M.: On the computational complexity of the Dirichlet problem for Poisson’s equation. Math. Struct. Comput. Sci. 27(8), 1437–1465 (2017). https://doi.org/10.1017/S096012951600013X
Ko, K.I.: The maximum value problem and NP real numbers. J. Comput. Syst. Sci. 24, 15–35 (1982)
Ko, K.I.: Complex. Theory Real Funct. Progress in Theoretical Computer Science, Birkhäuser, Boston (1991)
Ko, K.I., Friedman, H.: Computational complexity of real functions. Theoret. Comput. Sci. 20, 323–352 (1982)
Køber, P.K.: Uniform domain representations of \(\ell _p\)-spaces. Math. Log. Q. 180(2), 180–205 (2007)
Koswara, I., Pogudin, G., Selivanova, S., Ziegler, M.: Bit-complexity of solving systems of linear evolutionary partial differential equations. In: Santhanam, R., Musatov, D. (eds.) CSR 2021. LNCS, vol. 12730, pp. 223–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79416-3_13
Kreisel, G., Macintyre, A.: Constructive logic versus algebraization, I. In: Troelstra, A., van Dalen, D. (eds.) The L. E. J. Brouwer Centenary Sympos. Studies in Logic and the Foundations of Mathematics, vol. 110, pp. 217–260. North-Holland, Amsterdam (1982), (Noordwijkerhout, June 8–13 1981)
Kreitz, C., Weihrauch, K.: Theory of representations. Theoret. Comput. Sci. 38, 35–53 (1985)
Lambov, B.: RealLib: an efficient implementation of exact real arithmetic. Math. Struct. Comput. Sci. 17, 81–98 (2007)
Le Roux, S., Ziegler, M.: Singular coverings and non-uniform notions of closed set computability. In: Dillhage, R., Grubba, T., Sorbi, A., Weihrauch, K., Zhong, N. (eds.) Proceedings of the Fourth International Conference on Computability and Complexity in Analysis (CCA 2007). Electronic Notes in Theoretical Computer Science, vol. 202, pp. 73–88. Elsevier (2008), CCA 2007, Siena, Italy, 6–18 June 2007
Lee, H.: Random sampling of continuous objects. Ph.D. thesis, School of Computing (2020)
Lim, D., Ziegler, M.: Quantitative coding and complexity theory of continuous data. Tech. rep., arXiv (2021)
Luckhardt, H.: A fundamental effect in computations on real numbers. Theoret. Comput. Sci. 5(3), 321–324 (1977)
McNicholl, T.H.: A note on the computable categoricity of \(\ell ^p\) spaces. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 268–275. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20028-6_27
Mori, T., Tsujii, Y., Yasugi, M.: Computability of probability distributions and characteristic functions. Log. Methods Comput. Sci. 9, 3:9, 11 (2013). https://doi.org/10.2168/LMCS-9(3:9)2013
Mostowski, A.: On computable sequences. Fundam. Math. 44, 37–51 (1957)
Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45335-0_14
Nakao, M.T., Plum, M., Watanabe, Y.: Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations. Springer Series in Computational Mathematics, Springer (2019). https://doi.org/10.1007/978-981-13-7669-6
Neumann, E., Ouaknine, J., Worrell, J.: On ranking function synthesis and termination for polynomial programs. In: Konnov, I., Kovács, L. (eds.) 31st International Conference on Concurrency Theory, CONCUR 2020, September 1–4, 2020, Vienna, Austria (Virtual Conference). LIPIcs, vol. 171, pp. 15:1–15:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.15
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
Park, S., Ziegler, M.: Reliable degenerate matrix diagonalization. Tech. Rep. CS-TR-2018-415, KAIST (2018)
Pauly, A., Seon, D., Ziegler, M.: Computing Haar measures. In: Fernández, M., Muscholl, A. (eds.) 28th EACSL Annual Conference on Computer Science Logic, CSL 2020, January 13–16, 2020, Barcelona, Spain. LIPIcs, vol. 152, pp. 34:1–34:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.CSL.2020.34
Pauly, A., Ziegler, M.: Relative computability and uniform continuity of relations. J. Log. Anal. 5(7), 1–39 (2013)
Pour-El, M.B., Richards, J.I.: The wave equation with computable initial data such that its unique solution is not computable. Advances in Math. 39, 215–239 (1981)
Rettinger, R.: Bloch’s constant is computable. J. Univ. Comput. Sci. 14(6), 896–907 (2008)
Ryu, S., Park, J., Park, J.: Toward analysis and bug finding in javascript web applications in the wild. IEEE Softw. 36(3), 74–82 (2019). https://doi.org/10.1109/MS.2018.110113408
Schröder, M.: Admissible representations in computable analysis. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 471–480. Springer, Heidelberg (2006). https://doi.org/10.1007/11780342_48
Schröder, M.: Admissibly Represented Spaces and Qcb-Spaces. In: Handbook of Computability and Complexity in Analysis. TAC, pp. 305–346. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-59234-9_9
Selivanova, S., Steinberg, F., Thies, H., Ziegler, M.: Exact real computation of solution operators for linear analytic systems of partial differential equations. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2021. LNCS, vol. 12865, pp. 370–390. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85165-1_21
Specker, E.: The fundamental theorem of algebra in recursive analysis. In: Dejon, B., Henrici, P. (eds.) Constructive Aspects of the Fundamental Theorem of Algebra, pp. 321–329. Wiley-Interscience, London (1969)
Steinberg, F.: Complexity theory for spaces of integrable functions. Logical Methods in Computer Science 13(3), Paper No. 21, 39 (2017). https://doi.org/10.23638/LMCS-13(3:21)2017
Sun, S.-M., Zhong, N., Ziegler, M.: Computability of the solutions to Navier-Stokes equations via effective approximation. In: Du, D.-Z., Wang, J. (eds.) Complexity and Approximation. LNCS, vol. 12000, pp. 80–112. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41672-0_7
Triebel, H.: Theory of Function Spaces I, II, III. Birkhäuser (1983, 1992, 2006). https://doi.org/10.1007/978-3-0346-0416-1
Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-56999-9
Weihrauch, K.: The computable multi-functions on multi-represented sets are closed under programming. J. Univ. Comput. Sci. 14(6), 801–844 (2008)
Weihrauch, K., Tavana-Roshandel, N.: Representations of measurable sets in computable measure theory. Logical Methods Comput. Sci. 10, 3:7,21 (2014). https://doi.org/10.2168/LMCS-10(3:7)2014
Weihrauch, K., Zhong, N.: Is wave propagation computable or can wave computers beat the Turing machine? Proc. Lond. Math. Soc. 85(2), 312–332 (2002)
Yap, C., Sagraloff, M., Sharma, V.: Analytic root clustering: a complete algorithm using soft zero tests. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 434–444. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39053-1_51
Yap, C.K.: On guaranteed accuracy computation. In: Geometric Computation, pp. 322–373. World Scientific Publishing, Singapore (2004)
Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of Core 2: a library for exact numeric computation in geometry and algebra. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 121–141. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6_24
Ziegler, M.: Real computation with least discrete advice: a complexity theory of nonuniform computability with applications to effective linear algebra. Ann. Pure Appl. Logic 163(8), 1108–1139 (2012). https://doi.org/10.1016/j.apal.2011.12.030
Ziegler, M., Brattka, V.: Computability in linear algebra. Theoret. Comput. Sci. 326(1–3), 187–211 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Brauße, F., Collins, P., Ziegler, M. (2022). Computer Science for Continuous Data. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2022. Lecture Notes in Computer Science, vol 13366. Springer, Cham. https://doi.org/10.1007/978-3-031-14788-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-14788-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14787-6
Online ISBN: 978-3-031-14788-3
eBook Packages: Computer ScienceComputer Science (R0)