Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient NIZKs and Signatures from Commit-and-Open Protocols in the QROM

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2022 (CRYPTO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13508))

Included in the following conference series:

Abstract

Commit-and-open \(\Sigma \)-protocols are a popular class of protocols for constructing non-interactive zero-knowledge arguments and digital-signature schemes via the Fiat-Shamir transformation . Instantiated with hash-based commitments, the resulting non-interactive schemes enjoy tight online-extractability in the random oracle model. Online extractability improves the tightness of security proofs for the resulting digital-signature schemes by avoiding lossy rewinding or forking-lemma based extraction.

In this work, we prove tight online extractability in the quantum random oracle model (QROM), showing that the construction supports post-quantum security. First, we consider the default case where committing is done by element-wise hashing. In a second part, we extend our result to Merkle-tree based commitments. Our results yield a significant improvement of the provable post-quantum security of the digital-signature scheme Picnic.

Our analysis makes use of a recent framework by Chung et al. [CFHL21] for analysing quantum algorithms in the QROM using purely classical reasoning. Therefore, our results can to a large extent be understood and verified without prior knowledge of quantum information science.

Full version available at https://eprint.iacr.org/2022/270.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Informally, quoting from [Cha21], the considered Assumption 2 is that the random oracle can be replaced with a random function of a particular form “without harming too much the studied scheme”. More formally, the security loss caused by the considered replacement is assumed to remain bounded by a given function of the number of oracle queries. This assumption is rather ad-hoc and non-standard in that it is very much tailored to the scheme and its proof. Furthermore, even though Assumption 2 is an assumption that could potentially be proven in future work , it is hard to judge whether proving the assumption is actually any easier than proving the security of the considered scheme directly, avoiding Assumption 2—as a matter of fact, in this work we show that the latter is feasible, while Assumption 2 remains open.

  2. 2.

    This means that the density operator that describes the state of the compressed oracle has its support contained in the span of these \(|D_i\rangle \).

  3. 3.

    The terminology is somewhat misleading here; the actual compression takes place when invoking the sparse encoding (see below).

  4. 4.

    By the disjointness requirement, \(\bot \) cannot be contained in both.

  5. 5.

    B and n may depend on the security parameter \(\lambda \in \mathbb N\). We will then assume that B and n can be computed from \(\lambda \) in polynomial time (in \(\lambda \)).

  6. 6.

    Alternatively, one may consider a witness w for \({{\textbf {{\textsf {inst}}}}}\) to be given as additional input to \(\mathcal P\), and then ask \(\mathcal P\) to be polynomial-time as well.

  7. 7.

    One could also refer to \(\Sigma \)-protocols that use non-hash-based commitments, and/or are analyzed in the standard model, as C &O protocols, but this is not the scope here.

  8. 8.

    Note that \(m_i \in \mathcal M\) may consist of the actual “message” (computed by the prover using the witness w), possibly concatenated with randomness.

  9. 9.

    The restriction for S to be in \(\mathfrak {S}_{\min }\), rather than in \(\mathfrak {S}\), is to avoid an exponentially sized input while asking \(\mathcal E_\mathfrak {S}\) to be efficient.

  10. 10.

    We do not specify the local computation of the honest prover \(\mathcal{P}'\) in \(\varPi ' = (\mathcal{P}',\mathcal{V}')\), i.e., how to act when \(a_\circ \) is part of the input, and in general it might not be efficient, but this is fine since we are interested in the security against dishonest provers.

  11. 11.

    At the core, this is related to the reversibility of quantum computing and the resulting ability to “uncompute” a query.

  12. 12.

    As in the previous section we assume that \(\ell \) is a power of 2 for ease of exposition.

  13. 13.

    There is also a version using the Unruh transformation.

References

  1. Aumasson, J.-P., Endignoux, G.: Improving stateless hash-based signatures. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 219–242. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_12

    Chapter  Google Scholar 

  2. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    Chapter  MATH  Google Scholar 

  3. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha, G.: Banquet: short and fast signatures from AES. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 266–297. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_11

    Chapter  Google Scholar 

  4. Blocki, J., Lee, S., Zhou, S.: On the security of proofs of sequential work in a post-quantum world (2021)

    Google Scholar 

  5. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 1825–1842. ACM, New York (2017)

    Google Scholar 

  6. Chase, M., et al.: The picnic signature scheme. In: Submission to NIST Post-Quantum Cryptography project (2019)

    Google Scholar 

  7. Chase, M., et al.: Picnic (2019). https://www.microsoft.com/en-us/research/project/picnic/, Accessed 9 Apr 2019

  8. Chung, K.-M., Fehr, S., Huang, Y.-H., Liao, T.-N.: On the compressed-oracle technique, and post-quantum security of proofs of sequential work. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 598–629. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_21

    Chapter  Google Scholar 

  9. Chung, K.M., Guo, S., Liu, Q., Qian, L.: Tight quantum time-space tradeoffs for function inversion. In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pp. 673–684 (2020)

    Google Scholar 

  10. Chailloux, A.: Tight quantum security of the Fiat-Shamir transform for commit-and-open identification schemes with applications to post-quantum signature schemes. Cryptology ePrint Archive, Report 2019/699, version 1 July 2019 (2019). https://eprint.iacr.org/2019/699/20190701:091436

  11. Chailloux, A.: Tight quantum security of the Fiat-Shamir transform for commit-and-open identification schemes with applications to post-quantum signature schemes. Cryptology ePrint Archive, Report 2019/699, version 16 March 2021 (2021). https://eprint.iacr.org/2019/699/20210316:124850

  12. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 1–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_1

    Chapter  Google Scholar 

  13. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: multi-round fiat-shamir and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 602–631. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_21

    Chapter  Google Scholar 

  14. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the fiat-shamir transformation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_13

    Chapter  MATH  Google Scholar 

  15. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quantum random-oracle model. Cryptology ePrint Archive, Report 2021/280 (2021). https://eprint.iacr.org/2021/280

  16. Ducas, L., et al.: Crystals-dilithium: a lattice-based digital signature scheme. IACR Trans. Cryptographic Hardware Embed. Syst. 2018(1), 238–268 (2018)

    Article  MathSciNet  Google Scholar 

  17. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter signatures based on tailor-made minimalist symmetric-key crypto. Cryptology ePrint Archive, Report 2021/692 (2021). https://ia.cr/2021/692

  18. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_10

    Chapter  Google Scholar 

  19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  20. Grilo, A.B., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive reprogramming in the QROM. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 637–667. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_22

    Chapter  Google Scholar 

  21. Hamoudi, Y., Magniez, F.: Quantum time-space tradeoff for finding multiple collision pairs. In: Hsieh, M.-H. (ed.) 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021), vol. 197 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 1:1–1:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl (2021)

    Google Scholar 

  22. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC 2007, pp. 21–30. Association for Computing Machinery, New York (2007)

    Google Scholar 

  23. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, pp. 525–537. Association for Computing Machinery, New York (2018)

    Google Scholar 

  24. Kales, D., Zaverucha, G.: Improving the performance of the picnic signature scheme. IACR Trans. Cryptographic Hardware Embed. Syst., 154–188 (2020)

    Google Scholar 

  25. Liu, Q., Zhandry, M.: On finding quantum multi-collisions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 189–218. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_7

    Chapter  Google Scholar 

  26. Liu, Q., Zhandry, M.: Revisiting post-quantum fiat-shamir. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 326–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_12

    Chapter  Google Scholar 

  27. Nist post-quantum cryptography standardization. https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

  28. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_10

    Chapter  Google Scholar 

  29. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_25

    Chapter  MATH  Google Scholar 

  30. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9

    Chapter  Google Scholar 

Download references

Acknowledgements

JD was funded by ERC-ADG project 740972 (ALGSTRONGCRYPTO). CM was funded by a NWO VENI grant (Project No. VI.Veni.192.159). CS was supported by a NWO VIDI grant (Project No. 639.022.519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelle Don .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Don, J., Fehr, S., Majenz, C., Schaffner, C. (2022). Efficient NIZKs and Signatures from Commit-and-Open Protocols in the QROM. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13508. Springer, Cham. https://doi.org/10.1007/978-3-031-15979-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15979-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15978-7

  • Online ISBN: 978-3-031-15979-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics