Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

(Public) Verifiability for Composable Protocols Without Adaptivity or Zero-Knowledge

  • Conference paper
  • First Online:
Provable and Practical Security (ProvSec 2022)

Abstract

The Universal Composability (UC) framework (FOCS ’01) is the current standard for proving security of cryptographic protocols under composition. It allows to reason about complex protocol structures in a bottom-up fashion: any building block that is UC-secure can be composed arbitrarily with any other UC-secure construction while retaining their security guarantees. Unfortunately, some protocol properties such as the verifiability of outputs require excessively strong tools to achieve in UC. In particular, “obviously secure” constructions cannot directly be shown to be UC-secure, and verifiability of building blocks does not easily carry over to verifiability of the composed construction. In this work, we study Non-Interactive (Public) Verifiability of UC protocols, i.e. under which conditions a verifier can ascertain that a party obtained a specific output from the protocol. The verifier may have been part of the protocol execution or not, as in the case of public verifiability. We consider a setting used in a number of applications where it is ok to reveal the input of the party whose output gets verified and analyze under which conditions such verifiability can generically be achieved using “cheap” cryptographic primitives. That is, we avoid having to rely on adaptively secure primitives or heavy computational tools such as NIZKs. As Non-Interactive Public Verifiability is crucial when composing protocols with a public ledger, our approach can be beneficial when designing these with provably composable security and efficiency in mind.

Funded by the European Research Council (ERC) under the European Unions’ Horizon 2020 program under grant agreement No 669255 (MPCPRO).

Supported by the Concordium Foundation and by the Independent Research Fund Denmark grants number 9040-00399B (TrA2C), number 9131-00075B (PUMA) and number 0165-00079B (Foundations of Privacy Preserving and Accountable Decentralized Protocols).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alwen, J., Ostrovsky, R., Zhou, H.-S., Zikas, V.: Incoercible multi-party computation and universally composable receipt-free voting. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 763–780. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_37

    Chapter  Google Scholar 

  2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multiparty computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 443–458. IEEE Computer Society Press, May 2014

    Google Scholar 

  3. Asharov, G., Orlandi, C.: Calling out cheaters: covert security with public verifiability. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 681–698. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_41

    Chapter  Google Scholar 

  4. Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_11

    Chapter  Google Scholar 

  5. Baum, C., David, B., Dowsley, R.: Insured MPC: efficient secure computation with financial penalties. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 404–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_22

    Chapter  MATH  Google Scholar 

  6. Baum, C., David, B., Dowsley, R.: (Public) verifiability for composable protocols without adaptivity or zero-knowledge. Cryptology ePrint Archive, Paper 2020/207 (2020). https://eprint.iacr.org/2020/207

  7. Baum, C., David, B., Frederiksen, T.K.: P2DEX: privacy-preserving decentralized cryptocurrency exchange. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12726, pp. 163–194. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78372-3_7

    Chapter  Google Scholar 

  8. Baum, C., Orsini, E., Scholl, P.: Efficient secure multiparty computation with identifiable abort. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 461–490. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_18

    Chapter  Google Scholar 

  9. Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-round MPC with identifiable abort and public verifiability. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 562–592. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_20

    Chapter  Google Scholar 

  10. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applications to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_10

    Chapter  Google Scholar 

  11. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_24

    Chapter  Google Scholar 

  12. Camenisch, J., Dubovitskaya, M., Rial, A.: UC commitments for modular protocol design and applications to revocation and attribute tokens. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 208–239. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_8

    Chapter  Google Scholar 

  13. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: UC-secure non-interactive public-key encryption. In: IEEE CSF 2017 (2017)

    Google Scholar 

  14. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001

    Google Scholar 

  15. Canetti, R.: Universally composable signature, certification, and authentication. In: CSFW 2004 (2004)

    Google Scholar 

  16. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_4

    Chapter  Google Scholar 

  17. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual authentication and key-exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_20

    Chapter  MATH  Google Scholar 

  18. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random oracle. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 597–608. ACM Press, November 2014

    Google Scholar 

  19. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_16

    Chapter  Google Scholar 

  20. Canetti, R., Sarkar, P., Wang, X.: Blazing fast OT for three-round UC OT extension. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 299–327. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_11

    Chapter  Google Scholar 

  21. Canetti, R., Sarkar, P., Wang, X.: Efficient and round-optimal oblivious transfer and commitment with adaptive security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 277–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_10

    Chapter  Google Scholar 

  22. Cascudo, I., David, B.: SCRAPE: scalable randomness attested by public entities. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 537–556. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_27

    Chapter  Google Scholar 

  23. Cascudo, I., David, B.: ALBATROSS: publicly AttestabLe BATched randomness based on secret sharing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 311–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_11

    Chapter  Google Scholar 

  24. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor. Comput. Sci. 777, 155–183 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: 18th ACM STOC, pp. 364–369. ACM Press, May 1986

    Google Scholar 

  26. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  27. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_3

    Chapter  Google Scholar 

  28. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10

    Chapter  Google Scholar 

  29. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987

    Google Scholar 

  30. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_21

    Chapter  Google Scholar 

  31. Jafargholi, Z., Oechsner, S.: Adaptive security of practical garbling schemes. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 741–762. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_33

    Chapter  Google Scholar 

  32. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  33. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_25

    Chapter  Google Scholar 

  34. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. J. Cryptol. 25(4), 680–722 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  36. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40

    Chapter  Google Scholar 

  37. Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computation from threshold homomorphic cryptosystems. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 3–22. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28166-7_1

    Chapter  Google Scholar 

  38. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data transfer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_8

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baum, C., David, B., Dowsley, R. (2022). (Public) Verifiability for Composable Protocols Without Adaptivity or Zero-Knowledge. In: Ge, C., Guo, F. (eds) Provable and Practical Security. ProvSec 2022. Lecture Notes in Computer Science, vol 13600. Springer, Cham. https://doi.org/10.1007/978-3-031-20917-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20917-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20916-1

  • Online ISBN: 978-3-031-20917-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics