Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parameterized Algorithms for Eccentricity Shortest Path Problem

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13889))

Included in the following conference series:

Abstract

Given an undirected graph \( G=(V,E) \) and an integer \( \ell \), the Eccentricity Shortest Path (ESP) problem asks to check if there exists a shortest path P such that for every vertex \(v\in V(G)\), there is a vertex \(w\in P\) such that \(d_G(v,w)\le \ell \), where \(d_G(v,w)\) represents the distance between v and w in G. Dragan and Leitert [Theor. Comput. Sci. 2017] studied the optimization version of this problem which asks to find the minimum \(\ell \) for ESP and showed that it is NP-hard even on planar bipartite graphs with maximum degree 3. They also showed that ESP is W[2]-hard when parameterized by \( \ell \). On the positive side, Kučera and Suchý [IWOCA 2021] showed that ESP is fixed-parameter tractable (FPT) when parameterized by modular width, cluster vertex deletion set, maximum leaf number, or the combined parameters disjoint paths deletion set and \( \ell \). It was asked as an open question in the same paper, if ESP is FPT parameterized by disjoint paths deletion set or feedback vertex set. We answer these questions and obtain the following results:

  1. 1.

    ESP is FPT when parameterized by disjoint paths deletion set, or the combined parameters feedback vertex set and \(\ell \).

  2. 2.

    A (\(1+\epsilon \))-factor FPT approximation algorithm when parameterized by the feedback vertex set number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhyravarapu, S., Jana, S., Kanesh, L., Saurabh, S., Verma, S.: Parameterized algorithms for eccentricity shortest path problem (2023). http://arxiv.org/abs/2304.03233arXiv:2304.03233

  2. Birmelé, É., de Montgolfier, F., Planche, L.: Minimum eccentricity shortest path problem: an approximation algorithm and relation with the k-laminarity problem. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 216–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6_16

    Chapter  Google Scholar 

  3. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  Google Scholar 

  4. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53622-3

    Book  Google Scholar 

  5. Dragan, F.F., Leitert, A.: Minimum eccentricity shortest paths in some structured graph classes. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 189–202. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_14

    Chapter  Google Scholar 

  6. Dragan, F.F., Leitert, A.: On the minimum eccentricity shortest path problem. Theoret. Comput. Sci. 694, 66–78 (2017)

    Article  MathSciNet  Google Scholar 

  7. Faudree, R.J., Gould, R.J., Jacobson, M.S., West, D.B.: Minimum degree and dominating paths. J. Graph Theor. 84(2), 202–213 (2017)

    Article  MathSciNet  Google Scholar 

  8. Kučera, M., Suchý, O.: Minimum eccentricity shortest path problem with respect to structural parameters. In: Flocchini, P., Moura, L. (eds.) IWOCA 2021. LNCS, vol. 12757, pp. 442–455. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79987-8_31

    Chapter  Google Scholar 

  9. Völkel, F., Bapteste, E., Habib, M., Lopez, P., Vigliotti, C.: Read networks and k-laminar graphs. arXiv preprint arXiv:1603.01179 (2016)

Download references

Funding

The first author acknowledges SERB-DST for supporting this research via grant PDF/2021/003452.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Bhyravarapu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhyravarapu, S., Jana, S., Kanesh, L., Saurabh, S., Verma, S. (2023). Parameterized Algorithms for Eccentricity Shortest Path Problem. In: Hsieh, SY., Hung, LJ., Lee, CW. (eds) Combinatorial Algorithms. IWOCA 2023. Lecture Notes in Computer Science, vol 13889. Springer, Cham. https://doi.org/10.1007/978-3-031-34347-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34347-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34346-9

  • Online ISBN: 978-3-031-34347-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics