Abstract
We introduce the notion of homomorphic proxy re-authenticators, a tool that adds security and verifiability guarantees to multi-user data aggregation scenarios. It allows distinct sources to authenticate their data under their own keys, and a proxy can transform these single signatures or message authentication codes (MACs) to a MAC under a receiver’s key without having access to it. In addition, the proxy can evaluate arithmetic circuits (functions) on the inputs so that the resulting MAC corresponds to the evaluation of the respective function. As the messages authenticated by the sources may represent sensitive information, we also consider hiding them from the proxy and other parties in the system, except from the receiver.
We provide a general model and two modular constructions of our novel primitive, supporting the class of linear functions. On our way, we establish various novel building blocks. Most interestingly, we formally define the notion and present a construction of homomorphic proxy re-encryption, which may be of independent interest. The latter allows users to encrypt messages under their own public keys, and a proxy can re-encrypt them to a receiver’s public key (without knowing any secret key), while also being able to evaluate functions on the ciphertexts. The resulting re-encrypted ciphertext then holds an evaluation of the function on the input messages.
The full version of this paper is available as IACR Cryptology ePrint Archive Report 2017/086. All authors have been supported by EU H2020 project Prismacloud, grant agreement no. 644962. S. Ramacher has additionally been supported by EU H2020 project Credential, grant agreement no. 653454.
Work done while Daniel Slamanig was still at IAIK, Graz University of Technology,
Graz, Austria.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
While the homomorphic properties might allow one to define a function mapping to a target key, it is unclear whether handing over the description of such a function to a proxy would maintain the security requirements posed by our application.
- 2.
It is impossible to consider both, signers and aggregators, to be dishonest at the same time, as such a coalition could essentially authenticate everything. This is in contrast to the setting of proxy re-encryption, where it makes sense to model security in the face of receivers colluding with the proxy.
References
Abe, M., Hoshino, F., Ohkubo, M.: Design in Type-I, run in Type-III: fast and scalable bilinear-type conversion using integer programming. In: CRYPTO 2016 (2016)
Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_18
Akinyele, J.A., Garman, C., Hohenberger, S.: Automating fast and secure translations from Type-I to Type-III pairing schemes. In: CCS 2015 (2015)
Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17
Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9(1), 1–30 (2006)
Ateniese, G., Hohenberger, S.: Proxy re-signatures: new definitions, algorithms, and applications. In: CCS 2015 (2005)
Ayday, E., Raisaro, J.L., Hubaux, J., Rougemont, J.: Protecting and evaluating genomic privacy in medical tests and personalized medicine. In: WPES 2013 (2013)
Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: CCS 2013 (2013)
Bellare, M., Boldyreva, A., Kurosawa, K., Staddon, J.: Multirecipient encryption schemes: How to save on bandwidth and computation without sacrificing security. IEEE Trans. Inf. Theory 53(11), 3927–3943 (2007)
Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 21 (2016)
Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122
Blazy, O., Bultel, X., Lafourcade, P.: Two secure anonymous proxy-based data storages. In: SECRYPT, pp. 251–258 (2016)
Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_5
Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_23
Borceaa, C., Guptaa, A.B.D., Polyakova, Y., Rohloffa, K., Ryana, G.: Picador: End-to-end encrypted publish-subscribe information distribution with proxy re-encryption. Future Gener. Comp. Syst. 62, 119–127 (2016)
Canard, S., Devigne, J.: Highly privacy-protecting data sharing in a tree structure. Future Gener. Comp. Syst. 62, 119–127 (2016)
Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: CCS, pp. 185–194 (2007)
Castelluccia, C., Chan, A.C.F., Mykletun, E., Tsudik, G.: Efficient and provably secure aggregation of encrypted data in wireless sensor networks. ACM Trans. Sen. Netw. 5(3) (2009)
Catalano, D.: Homomorphic signatures and message authentication codes. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 514–519. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_29
Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-2 functions on encrypted data. In: CCS 2015 (2015)
Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_21
Catalano, D., Marcedone, A., Puglisi, O.: Authenticating computation on groups: new homomorphic primitives and applications. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 193–212. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_11
Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_15
Danezis, G., Livshits, B.: Towards ensuring client-side computational integrity. In: CCSW 2011 (2011)
Derler, D., Slamanig, D.: Key-homomorphic signatures and applications to multiparty signatures. Cryptology ePrint Archive 2016, 792 (2016)
Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic authenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_17
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009 (2009)
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Günther, F., Manulis, M., Peter, A.: Privacy-enhanced participatory sensing with collusion resistance and data aggregation. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 321–336. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12280-9_21
Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: NDSS 2003 (2003)
Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-series data. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_10
Lai, J., Deng, R.H., Pang, H., Weng, J.: Verifiable computation on outsourced encrypted data. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 273–291. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9_16
Lai, R.W.F., Tai, R.K.H., Wong, H.W.H., Chow, S.S.M.: A zoo of homomorphic signatures: Multi-key and key-homomorphism. Cryptology ePrint Archive, Report 2016/834 (2016)
Leontiadis, I., Elkhiyaoui, K., Molva, R.: Private and dynamic time-series data aggregation with trust relaxation. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 305–320. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12280-9_20
Leontiadis, I., Elkhiyaoui, K., Önen, M., Molva, R.: PUDA – privacy and unforgeability for data aggregation. In: Reiter, M., Naccache, D. (eds.) CANS 2015. LNCS, vol. 9476, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26823-1_1
Li, Q., Cao, G.: Efficient privacy-preserving stream aggregation in mobile sensing with low aggregation error. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 60–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39077-7_4
Li, Q., Cao, G., Porta, T.F.L.: Efficient and privacy-aware data aggregation in mobile sensing. IEEE Trans. Dep. Sec. Comput. 11(2), 115–129 (2014)
Libert, B., Vergnaud, D.: Multi-use unidirectional proxy re-signatures. In: CCS 2008 (2008)
Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-encryption. IEEE Trans. Inf. Theory 57(3), 1786–1802 (2011)
Ma, C., Li, J., Ouyang, W.: A homomorphic proxy re-encryption from lattices. In: Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp. 353–372. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47422-9_21
Nuñez, D., Agudo, I.: BlindIdM: a privacy-preserving approach for identity management as a service. Int. J. Inf. Sec. 13(2), 199–215 (2014)
Nuñez, D., Agudo, I., Lopez, J.: Integrating OpenID with proxy re-encryption to enhance privacy in cloud-based identity services. In: CloudCom, pp. 241–248 (2012)
Nuñez, D., Agudo, I., Lopez, J.: A parametric family of attack models for proxy re-encryption. In: CSF, pp. 290–301 (2015)
Nuñez, D., Agudo, I., Lopez, J.: On the application of generic CCA-secure transformations to proxy re-encryption. Secur. Commun. Netw. 9(12), 1769–1785 (2016)
Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: SIGMOD 2010 (2010)
Shi, E., Chan, T.H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: NDSS 2011 (2011)
Slamanig, D., Stranacher, K., Zwattendorfer, B.: User-centric identity as a service-architecture for eIDs with selective attribute disclosure. In: SACMAT, pp. 153–164 (2014)
Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them. Commun. ACM 58(2), 74–84 (2015)
Xu, P., Xu, J., Wang, W., Jin, H., Susilo, W., Zou, D.: Generally hybrid proxy re-encryption: a secure data sharing among cryptographic clouds. In: AsiaCCS, pp. 913–918 (2016)
Zwattendorfer, B., Slamanig, D., Stranacher, K., Hörandner, F.: A federated cloud identity broker-model for enhanced privacy via proxy re-encryption. In: De Decker, B., Zúquete, A. (eds.) CMS 2014. LNCS, vol. 8735, pp. 92–103. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44885-4_8
Acknowledgements
We thank David Nuñez for his valuable comments on a draft of this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 International Financial Cryptography Association
About this paper
Cite this paper
Derler, D., Ramacher, S., Slamanig, D. (2017). Homomorphic Proxy Re-Authenticators and Applications to Verifiable Multi-User Data Aggregation. In: Kiayias, A. (eds) Financial Cryptography and Data Security. FC 2017. Lecture Notes in Computer Science(), vol 10322. Springer, Cham. https://doi.org/10.1007/978-3-319-70972-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-70972-7_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70971-0
Online ISBN: 978-3-319-70972-7
eBook Packages: Computer ScienceComputer Science (R0)