Abstract
In this article, an approach for creating image classification rules using evolutionary operators is described. Classification rules, discovered by application of a genetic algorithm on remote sensing data, are able to identify spectral classes with comparable accuracy to that of a human expert. Genetic operators and the fitness function are detailed, and then validated for hyperspectral images (more than 80 spectral bands). Particular attention is given to mutation operators and their efficiency in the creation of robust classification rules. In our case studies, the hyperspectral images contain voluminous, complex and frequently noisy data. The experiments have been carried out on remote sensing images covering zones of Lagoon of Venice and the city of Strasburg, France. It has been shown that the evolution-based process can not only detect and eliminate noisy spectral bands in remote sensing images but also produce comprehensive and simple rules which can be also applied to other images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anglano, C., Giordana, A., Bello, G.L., Saitta, L.: An experimental evaluation of coevolutive concept learning. In: Proc. of ICML 1998, pp. 19–27. Morgan Kaufmann, San Francisco (1998)
Blickle, T., Thiele, L.: A Comparison of Selection Schemes used in Genetic Algorithms, Computer Engineering and Communication Networks Lab, TIK-Report Nr. 11, 2nd edn., Swiss Federal Institute of Technology, Zurich (1995)
Bock, H.H., Diday, E. (eds.): Analysis of Symbolic Data. Exploratory Methods for Extracting Statistical Information from Complex Data. Studies in Classification, Data Analysis and Knowledge Organization, vol. 15. Springer, Heidelberg (1999)
Carvalho, D.R., Freitas, A.A.: A genetic algorithm with sequential niching for discovering small-disjunct rules. In. Proc. of GECCO 2002, pp. 1035–1042 (2002)
Dejong, K.A.: Learning with Genetic Algorithms: An Overview. Machine Learning 3, 121–138 (1988)
Fjørtoft, R., Marthon, P., Lopes, A., Sery, F., Ducrot-Gambart, D., Cubero-Castan, E.: Region-Based Enhancement and Analysis of SAR Images. In: Proc. of ICIP 1996, Lausanne, vol. 3, pp. 879–882 (1996)
Kallel, L., Schoenauer, M.: Alternative random initialization in genetic algorithms. In: Proc. of ICGA 1997, pp. 268–275. Morgan Kaufmann, San Francisco (1997)
Korczak, J., Louis, N.: Synthesis of Conceptual Hierarchies Applied to Remote Sensing. In: Proc. of SPIE, Image and Signal Processing for Remote Sensing IV, Barcelona, pp. 397–406 (1999)
Korczak, J., Quirin, A.: Evolutionary Approach to Discovery of Classification Rules from Remote Sensing Images. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 388–398. Springer, Heidelberg (2003)
Korczak, J., Quirin, A.: Découverte de règles de classification par approche évolutive: application aux images de télédétection. In: Proc. of EGC 2003, Lyon (2003)
Kurita, T., Otsu, N.: Texture Classification by Higher Order Local Autocorrelation Features. In: Proc. of Asian Conf. on Computer Vision, Osaka, pp. 175–178 (1993)
Quirin, A.: Découverte de règles de classification: classifieurs évolutifs, Mémoire DEA d’Informatique, Université Louis Pasteur, LSIIT UMR-7005 CNRS, Strasbourg (2002)
Rendon, M.V.: Reinforcement Learning in the Fuzzy Classifier System, Reporte de Investigaci No. CIA-RI-031, ITESM, Campus Monterrey, Centro de Inteligencia Artificial (1997)
Riolo, R.L.: Empirical Studies of Default Hierarchies and Sequences of Rules in Learning Classifier Systems, PhD Dissertation, Comp. Sc. and Eng. Dept, Univ. of Michigan (1988)
Ross, B.J., Gualtieri, A.G., Fueten, F., Budkewitsch, P.: Hyperspectral Image Analysis Using Genetic Programming. In: Langdon, W.B., et al. (eds.) Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 1196–1203. M. Kaufmann, CA (2002)
Thomsen, R., Krink, T.: Self-Adaptive Operator Scheduling using the Religion-Based EA. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 214–223. Springer, Heidelberg (2002)
Weber, C.: Images satellitaires et milieu urbain, Hermès, Paris (1995)
Wilson, S.W.: State of XCS Classifier System Research. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, p. 63. Springer, Heidelberg (2000)
Wooding, M.: Proceedings of the Final Results Workshop on DAISEX (Digital AIrborne Spectrometer EXperiment), ESTEC, Noordwijk (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Korczak, J., Quirin, A. (2004). Evolutionary Mining for Image Classification Rules. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2003. Lecture Notes in Computer Science, vol 2936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24621-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-24621-3_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21523-3
Online ISBN: 978-3-540-24621-3
eBook Packages: Springer Book Archive