Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evolutionary Mining for Image Classification Rules

  • Conference paper
Artificial Evolution (EA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2936))

Abstract

In this article, an approach for creating image classification rules using evolutionary operators is described. Classification rules, discovered by application of a genetic algorithm on remote sensing data, are able to identify spectral classes with comparable accuracy to that of a human expert. Genetic operators and the fitness function are detailed, and then validated for hyperspectral images (more than 80 spectral bands). Particular attention is given to mutation operators and their efficiency in the creation of robust classification rules. In our case studies, the hyperspectral images contain voluminous, complex and frequently noisy data. The experiments have been carried out on remote sensing images covering zones of Lagoon of Venice and the city of Strasburg, France. It has been shown that the evolution-based process can not only detect and eliminate noisy spectral bands in remote sensing images but also produce comprehensive and simple rules which can be also applied to other images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anglano, C., Giordana, A., Bello, G.L., Saitta, L.: An experimental evaluation of coevolutive concept learning. In: Proc. of ICML 1998, pp. 19–27. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  • Blickle, T., Thiele, L.: A Comparison of Selection Schemes used in Genetic Algorithms, Computer Engineering and Communication Networks Lab, TIK-Report Nr. 11, 2nd edn., Swiss Federal Institute of Technology, Zurich (1995)

    Google Scholar 

  • Bock, H.H., Diday, E. (eds.): Analysis of Symbolic Data. Exploratory Methods for Extracting Statistical Information from Complex Data. Studies in Classification, Data Analysis and Knowledge Organization, vol. 15. Springer, Heidelberg (1999)

    Google Scholar 

  • Carvalho, D.R., Freitas, A.A.: A genetic algorithm with sequential niching for discovering small-disjunct rules. In. Proc. of GECCO 2002, pp. 1035–1042 (2002)

    Google Scholar 

  • Dejong, K.A.: Learning with Genetic Algorithms: An Overview. Machine Learning 3, 121–138 (1988)

    Article  Google Scholar 

  • Fjørtoft, R., Marthon, P., Lopes, A., Sery, F., Ducrot-Gambart, D., Cubero-Castan, E.: Region-Based Enhancement and Analysis of SAR Images. In: Proc. of ICIP 1996, Lausanne, vol. 3, pp. 879–882 (1996)

    Google Scholar 

  • Kallel, L., Schoenauer, M.: Alternative random initialization in genetic algorithms. In: Proc. of ICGA 1997, pp. 268–275. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  • Korczak, J., Louis, N.: Synthesis of Conceptual Hierarchies Applied to Remote Sensing. In: Proc. of SPIE, Image and Signal Processing for Remote Sensing IV, Barcelona, pp. 397–406 (1999)

    Google Scholar 

  • Korczak, J., Quirin, A.: Evolutionary Approach to Discovery of Classification Rules from Remote Sensing Images. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 388–398. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  • Korczak, J., Quirin, A.: Découverte de règles de classification par approche évolutive: application aux images de télédétection. In: Proc. of EGC 2003, Lyon (2003)

    Google Scholar 

  • Kurita, T., Otsu, N.: Texture Classification by Higher Order Local Autocorrelation Features. In: Proc. of Asian Conf. on Computer Vision, Osaka, pp. 175–178 (1993)

    Google Scholar 

  • Quirin, A.: Découverte de règles de classification: classifieurs évolutifs, Mémoire DEA d’Informatique, Université Louis Pasteur, LSIIT UMR-7005 CNRS, Strasbourg (2002)

    Google Scholar 

  • Rendon, M.V.: Reinforcement Learning in the Fuzzy Classifier System, Reporte de Investigaci No. CIA-RI-031, ITESM, Campus Monterrey, Centro de Inteligencia Artificial (1997)

    Google Scholar 

  • Riolo, R.L.: Empirical Studies of Default Hierarchies and Sequences of Rules in Learning Classifier Systems, PhD Dissertation, Comp. Sc. and Eng. Dept, Univ. of Michigan (1988)

    Google Scholar 

  • Ross, B.J., Gualtieri, A.G., Fueten, F., Budkewitsch, P.: Hyperspectral Image Analysis Using Genetic Programming. In: Langdon, W.B., et al. (eds.) Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 1196–1203. M. Kaufmann, CA (2002)

    Google Scholar 

  • Thomsen, R., Krink, T.: Self-Adaptive Operator Scheduling using the Religion-Based EA. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 214–223. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  • Weber, C.: Images satellitaires et milieu urbain, Hermès, Paris (1995)

    Google Scholar 

  • Wilson, S.W.: State of XCS Classifier System Research. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, p. 63. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  • Wooding, M.: Proceedings of the Final Results Workshop on DAISEX (Digital AIrborne Spectrometer EXperiment), ESTEC, Noordwijk (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korczak, J., Quirin, A. (2004). Evolutionary Mining for Image Classification Rules. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2003. Lecture Notes in Computer Science, vol 2936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24621-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24621-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21523-3

  • Online ISBN: 978-3-540-24621-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics