Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Alternative Logic for Knowability

  • Conference paper
Logic, Rationality, and Interaction (LORI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6953))

Included in the following conference series:

Abstract

We give an alternative logic for knowability to arbitrary public announcement logic. In the new semantics, ‘knowable’ means ‘known after an information update’ rather than the more specific interpretation of ‘known after an announcement’. An update is modelled by the refining of accessibility relations. We compare our logic to arbitrary announcement logic and subset space logic and thus establish a link between the latter two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T.: What can we achieve by arbitrary announcements?: A dynamic take on Fitch’s knowability. In: Proceedings of TARK, pp. 42–51 (2007)

    Google Scholar 

  2. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., de Lima, T.: ‘Knowable’ as ‘known after an announcement’. Review of Symbolic Logic 1, 305–334 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baskent, C.: Topics in Subset Space Logic. Master Thesis, University of Amsterdam (2007)

    Google Scholar 

  4. van Benthem, J.: What one may come to know. Analysis 64(282), 95–105 (2004)

    Article  MATH  Google Scholar 

  5. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  6. Brogaard, B.: Fitch’s paradox of knowability. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2009), http://plato.stanford.edu/entries/fitch-paradox/

  7. Dabrowski, A., Moss, L., Parikh, R.: Topological reasoning and the logic of knowledge. Annals of Pure and Applied Logic 78, 73–110 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Heidelberg (2007)

    Book  MATH  Google Scholar 

  9. van Ditmarsch, H., French, T.: Simulation and Information: Quantifying over Epistemic Events. In: Meyer, J.J., Broersen, J. (eds.) KRAMAS 2008. LNCS, vol. 5605, pp. 51–65. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Fitch, F.: A logical analysis of some value concepts. Journal of Symbolic Logic 28(2), 135–142 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  11. French, T.N.: Bisimulation Quantifiers for Modal Logics. Ph.D. thesis, The University of Western Australia (2006)

    Google Scholar 

  12. Heinemann, B.: Topology and Knowledge of Multiple Agents. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds.) IBERAMIA 2008. LNCS (LNAI), vol. 5290, pp. 1–10. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Heinemann, B.: Refining the Notion of Effort. In: Proceedings of ECAI, pp. 1071–1072 (2010)

    Google Scholar 

  14. Heinemann, B.: Using hybrid logic for coping with functions in subset spaces. Studia Logica 94(1), 23–45 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meyer, J.J., van Der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  16. Moss, L., Parikh, R.: Topological reasoning and the logic of knowledge: preliminary report. In: Proceedings of TARK, pp. 95–105 (1992)

    Google Scholar 

  17. Moss, L., Parikh, R., Steinsvold, C.: Topology and Epistemic Logic. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logic. Springer, Heidelberg (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wen, X., Liu, H., Huang, F. (2011). An Alternative Logic for Knowability. In: van Ditmarsch, H., Lang, J., Ju, S. (eds) Logic, Rationality, and Interaction. LORI 2011. Lecture Notes in Computer Science(), vol 6953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24130-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24130-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24129-1

  • Online ISBN: 978-3-642-24130-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics