Abstract
We give an alternative logic for knowability to arbitrary public announcement logic. In the new semantics, ‘knowable’ means ‘known after an information update’ rather than the more specific interpretation of ‘known after an announcement’. An update is modelled by the refining of accessibility relations. We compare our logic to arbitrary announcement logic and subset space logic and thus establish a link between the latter two.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T.: What can we achieve by arbitrary announcements?: A dynamic take on Fitch’s knowability. In: Proceedings of TARK, pp. 42–51 (2007)
Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., de Lima, T.: ‘Knowable’ as ‘known after an announcement’. Review of Symbolic Logic 1, 305–334 (2008)
Baskent, C.: Topics in Subset Space Logic. Master Thesis, University of Amsterdam (2007)
van Benthem, J.: What one may come to know. Analysis 64(282), 95–105 (2004)
Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge University Press, Cambridge (2001)
Brogaard, B.: Fitch’s paradox of knowability. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2009), http://plato.stanford.edu/entries/fitch-paradox/
Dabrowski, A., Moss, L., Parikh, R.: Topological reasoning and the logic of knowledge. Annals of Pure and Applied Logic 78, 73–110 (1996)
van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Heidelberg (2007)
van Ditmarsch, H., French, T.: Simulation and Information: Quantifying over Epistemic Events. In: Meyer, J.J., Broersen, J. (eds.) KRAMAS 2008. LNCS, vol. 5605, pp. 51–65. Springer, Heidelberg (2009)
Fitch, F.: A logical analysis of some value concepts. Journal of Symbolic Logic 28(2), 135–142 (1963)
French, T.N.: Bisimulation Quantifiers for Modal Logics. Ph.D. thesis, The University of Western Australia (2006)
Heinemann, B.: Topology and Knowledge of Multiple Agents. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds.) IBERAMIA 2008. LNCS (LNAI), vol. 5290, pp. 1–10. Springer, Heidelberg (2008)
Heinemann, B.: Refining the Notion of Effort. In: Proceedings of ECAI, pp. 1071–1072 (2010)
Heinemann, B.: Using hybrid logic for coping with functions in subset spaces. Studia Logica 94(1), 23–45 (2010)
Meyer, J.J., van Der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge University Press, Cambridge (1995)
Moss, L., Parikh, R.: Topological reasoning and the logic of knowledge: preliminary report. In: Proceedings of TARK, pp. 95–105 (1992)
Moss, L., Parikh, R., Steinsvold, C.: Topology and Epistemic Logic. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logic. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wen, X., Liu, H., Huang, F. (2011). An Alternative Logic for Knowability. In: van Ditmarsch, H., Lang, J., Ju, S. (eds) Logic, Rationality, and Interaction. LORI 2011. Lecture Notes in Computer Science(), vol 6953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24130-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-24130-7_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24129-1
Online ISBN: 978-3-642-24130-7
eBook Packages: Computer ScienceComputer Science (R0)