Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Self-adaptive Power and Energy Management for TCPAs

  • Chapter
  • First Online:
Invasive Tightly Coupled Processor Arrays

Part of the book series: Computer Architecture and Design Methodologies ((CADM))

  • 432 Accesses

Abstract

In this chapter, we propose to exploit the simple yet effective idea to power processing elements of a TCPAs on at time of invasion and to shut them down again by power gating as soon as an application retreats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mutoh S, Douseki T, Matsuya Y, Aoki T, Shigematsu S, Yamada J (1995) 1-v power supply high-speed digital circuit technology with multithreshold-voltage cmos. IEEE J Solid-State Circuits 30(8):847–854. ISSN 0018-9200. doi:10.1109/4.400426

    Google Scholar 

  2. Lari V, Muddasani S, Boppu S, Hannig F, Teich J (2012) Design of low power on-chip processor arrays. In: Proceedings of the 23rd IEEE international conference on application-specific systems, architectures, and processors (ASAP), IEEE Computer Society, pp 165–168. ISBN 978-0-7695-4768-8. doi:10.1109/ASAP.2012.10

  3. Lari V, Muddasani S, Boppu S, Hannig F, Schmid M, Teich J (2013) Hierarchical power management for adaptive tightly-coupled processor arrays. ACM Trans Des Autom Electron Syst(TODAES), 18(1):2:1–2:25. doi:10.1145/2390191.2390193

    Google Scholar 

  4. Kupriyanov A, Kissler D, Hannig F, Teich J (2007) Efficient event-driven simulation of parallel processor architectures. In: Proceedings of the 10th international workshop on software and compilers for embedded systems (SCOPES), pp 71–80, Nice, France, ACM Press. doi:10.1145/1269843.1269854

  5. Lari V, Narovlyanskyy A, Hannig F, Teich J (2011) Decentralized dynamic resource management support for massively parallel processor arrays. In: Proceedings of the IEEE international conference on application-specific systems, architectures and processors (ASAP), IEEE Computer Society, pp 87–94. ISBN 978-1-4577-1291-3. doi:10.1109/ASAP.2011.6043240

  6. Kao J, Narendra S, Chandrakasan A (2002) Subthreshold leakage modeling and reduction techniques. In: Proceedings of the IEEE/ACM international conference on computer-aided design (ICCAD), ACM, pp 141–148. ISBN 0-7803-7607-2. doi:10.1145/774572.774593

  7. Homayoun H, Golshan S, Bozorgzadeh E, Veidenbaum A, Kurdahi FJ (2011) On leakage power optimization in clock tree networks for asics and general-purpose processors. Sustain Comput: Inf Syst 1(1):75–87. ISSN 2210-5379. doi:10.1016/j.suscom.2010.10.005

    Google Scholar 

  8. Kissler D, Strawetz A, Hannig F, Teich J (2008) Power-efficient reconfiguration control in coarse-grained dynamically reconfigurable architectures. In: Proceedings of the 18th international workshop on power and timing modeling, optimization and simulation (PATMOS), Lecture notes in computer science, vol 5349. Springer, Libson, Portugal, pp 307–317. ISBN 978-3-540-95947-2. doi:10.1007/978-3-540-95948-9_31

    Google Scholar 

  9. Wu Q, Pedram M, Wu X (2000) Clock-gating and its application to low power design of sequential circuits. IEEE Trans Circuits Syst I: Fundam Theory Appl. 47(3):415–420. ISSN 1057-7122. doi:10.1109/81.841927

    Google Scholar 

  10. Hailin J, Marek-Sadowska M, Nassif S (2005) Benefits and costs of power-gating technique. In: Proceedings of the IEEE international conference on computer design: VLSI in computers and processors (ICCD), IEEE Computer Society. pp 559–566. doi:10.1109/ICCD.2005.34

  11. Kissler D, Gran D, Salcic Z, Hannig F, Teich J (2011) Scalable many-domain power gating in coarse-grained reconfigurable processor arrays. Embed Syst Lett. 3(2):58–61. ISSN 1943-0663. doi:10.1109/LES.2011.2124438

    Google Scholar 

  12. Saito Y, Shirai T, Nakamura T, Nishimura T, Hasegawa Y, Tsutsumi S, Kashima T, Nakata M, Takeda S, Usami K, Amano H, (2008) Leakage power reduction for coarse grained dynamically reconfigurable processor arrays with fine grained power gating technique. In: Proceedings of the international conference on ICECE Technology (FPT), IEEE, pp 329–332. ISBN 978-1-4244-3783-2. doi:10.1109/FPT.2008.4762410

  13. Benini L, Bogliolo A, De Micheli G (2000) A survey of design techniques for system-level dynamic power management. IEEE Trans Very Large Scale Integration (VLSI) Syst. 8(3):299–316. ISSN 1063-8210. doi:10.1109/92.845896

    Google Scholar 

  14. Benini L, De Micheli G (2000) System-level power optimization: techniques and tools. ACM Trans Des Autom Electron Syst. 5(2):115–192. ISSN 1084-4309. doi:10.1145/335043.335044

    Google Scholar 

  15. Hosseinabady M, Nunez-Yanez JL (2012) Run-time stochastic task mapping on a large scale network-on-chip with dynamically reconfigurable tiles. IET comput Digit Tech. 6(1):1–11. ISSN 1751–8601. doi:10.1049/iet-cdt.2010.0097

    Google Scholar 

  16. Ost L, Mandelli M, Almeida GM, Moller L, Indrusiak LS, Sassatelli G, Benoit P, Glesner M, Robert M, Moraes F (2013) Power-aware dynamic mapping heuristics for noc-based mpsocs using a unified model-based approach. ACM Trans Embed Comput Syst. 12(3):75:1–75:22. ISSN 1539-9087. doi:10.1145/2442116.2442125

    Google Scholar 

  17. Shen H, Tan Y, Lu J, Wu Q, Qiu Q (2013) Achieving autonomous power management using reinforcement learning. ACM Trans Des Autom Electron Syst (TODAES), 18(2):24:1–24:32.ISSN 1084-4309. doi:10.1145/2442087.2442095

    Google Scholar 

  18. Zompakis N, Bartzas A, Soudris D (2014) Using chaos theory based workload analysis to perform dynamic frequency scaling on mpsocs. J Syst Archit (JSA), 61(1):28–39. ISSN 1383-7621. doi:10.1016/j.sysarc.2014.10.003. http://www.sciencedirect.com/science/article/pii/S1383762114001313

    Google Scholar 

  19. Triki M, Wang Y, Ammari AC, Pedram M (2015) Hierarchical power management of a system with autonomously power-managed components using reinforcement learning. Integr VLSI J. 48:10–20. ISSN 0167-9260. doi:10.1016/j.vlsi.2014.06.001

    Google Scholar 

  20. Bartolini A, Cacciari M, Tilli A, Benini, L (2013) Thermal and energy management of high-performance multicores: distributed and self-calibrating model-predictive controller. IEEE Trans Parallel Distrib. Syst. 24(1):170–183. ISSN 1045-9219. doi:10.1109/TPDS.2012.117

    Google Scholar 

  21. Yeo I, Liu CC, Kim EJ (2008) Predictive dynamic thermal management for multicore systems. In: Proceedings of the 45th annual design automation conference (DAC), New York, USA, ACM. pp 734–739. ISBN 978-1-60558-115-6. doi:10.1145/1391469.1391658

  22. Bircher WL, John L (2012) Predictive power management for multi-core processors. In Varbanescu A, Molnos A, van Nieuwpoort R (ed) Computer Architecture, Lecture notes in computer science, vol 6161. pp 243–255. Springer, Berlin, Heidelberg. ISBN 978-3-642-24321-9. doi:10.1007/978-3-642-24322-6_21

    Google Scholar 

  23. Isci C, Contreras G, Martonosi M (2006) Live, runtime phase monitoring and prediction on real systems with application to dynamic power management. In: Proceedings of the 39th annual IEEE/ACM international symposium on microarchitecture, MICRO 39, IEEE Computer Society, pp 359–370, Washington, DC, USA. ISBN 0-7695-2732-9. doi:10.1109/MICRO.2006.30

  24. Isci C, Buyuktosunoglu A, Martonosi M (2005) Long-term workload phases: duration predictions and applications to DVFS. Micro, IEEE 25(5):39–51. ISSN 0272-1732. doi:10.1109/MM.2005.93

    Google Scholar 

  25. Irani S, Shukla S, Gupta R (2003) Online strategies for dynamic power management in systems with multiple power-saving states. ACM Trans. Embed. Comput. Syst. 2(3):325–346. ISSN 1539-9087. doi:10.1145/860176.860180

    Google Scholar 

  26. Liu X, Shenoy P, Corner MD (2008) Chameleon: application-level power management. IEEE Trans Mob Comput. 7(8):995–1010. ISSN 1536-1233. doi:10.1109/TMC.2007.70767

    Google Scholar 

  27. Fleischmann M (2001) Longrun power management-dynamic power management for crusoe processors. Transmeta Corp 18

    Google Scholar 

  28. Wu Q, Juang P, Martonosi M, Clark DW (2004) Formal online methods for voltage/frequency control in multiple clock domain microprocessors. SIGARCH Comput Archit News 32(5):248–259. ISSN 0163-5964. doi:10.1145/1037947.1024423

    Google Scholar 

  29. Govil K, Chan E, Wasserman H (1995) Comparing algorithm for dynamic speed-setting of a low-power cpu. In: Proceedings of the 1st annual international conference on mobile computing and networking (MobiCom), MobiCom ’95, New York, USA, ACM, pp 13–25. ISBN 0-89791-814-2. doi:10.1145/215530.215546

  30. Roy A, Rumble SM, Stutsman R, Levis P, Mazières D, Zeldovich N (2011) Energy management in mobile devices with the cinder operating system. In: Proceedings of the 6th conference on computer systems (EuroSys), EuroSys ’11, New York, USA, ACM. pp 139–152. ISBN 978-1-4503-0634-8. doi:10.1145/1966445.1966459

  31. Al-Daoud H, Al-Azzoni I, Down DG (2012) Power-aware linear programming based scheduling for heterogeneous computer clusters. Futur Gener Comput Syst. 28(5):745–754. ISSN 0167-739X. doi:10.1016/j.future.2011.04.001. http://www.sciencedirect.com/science/article/pii/S0167739X11000525

    Google Scholar 

  32. Ellis CS (1999) The case for higher-level power management. In: Proceedings of the seventh workshop on hot topics in operating systems, pp 162–167. doi:10.1109/HOTOS.1999.798394

  33. Yuan W, Nahrstedt K (2003) Energy-efficient soft real-time cpu scheduling for mobile multimedia systems. In: Proceedings of the nineteenth ACM symposium on operating systems principles (SOSP), New York, USA, ACM, pp 149–163. ISBN 1-58113-757-5. doi:10.1145/945445.945460

  34. Vardhan V, Yuan W, Harris AF, Adve SV, Kravets R, Nahrstedt K, Sachs D, Jones D (2009) Grace-2: integrating fine-grained application adaptation with global adaptation for saving energy. Int J Embed Syst 4(2):152–169

    Article  Google Scholar 

  35. Javaid H, Shafique M, Henkel J, Parameswaran S (2011) System-level application-aware dynamic power management in adaptive pipelined mpsocs for multimedia. In: Proceedings of the international conference on computer-aided design, IEEE Press, New York, pp 616–623

    Google Scholar 

  36. Martins M, Fonseca R (2013) Application modes: a narrow interface for end-user power management in mobile devices. In: Proceedings of the 14th workshop on mobile computing systems and applications (HotMobile), ACM, New York, USA, pp 5:1–5:6. ISBN 978-1-4503-1421-3. doi:10.1145/2444776.2444783

  37. Javaid H, Shafique M, Henkel J, Parameswaran S (2014) Energy-efficient adaptive pipelined mpsocs for multimedia applications. In: Proceedings of the IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(5):663–676. ISSN 0278-0070. doi:10.1109/TCAD.2014.2298196

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Lari .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lari, V. (2016). Self-adaptive Power and Energy Management for TCPAs. In: Invasive Tightly Coupled Processor Arrays. Computer Architecture and Design Methodologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-1058-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1058-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1057-6

  • Online ISBN: 978-981-10-1058-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics