Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Design of a Simple Orthogonal Multiwavelet Filter by Matrix Spectral Factorization

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We consider the design of an orthogonal symmetric/antisymmetric multiwavelet from its matrix product filter by matrix spectral factorization. As a test problem, we construct a simple matrix product filter with desirable properties and factor it using Bauer’s method, which in this case can be done in closed form. The corresponding orthogonal multiwavelet function is derived using algebraic techniques which allow symmetry to be considered. This leads to the known orthogonal multiwavelet SA1, which can also be derived directly. We also give a lifting scheme for SA1, investigate the influence of the number of significant digits in the calculations, and show some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. Abbas, S. Vahdati, K.A. Mohd Atan, M.A. Nik Long, Legendre multi-wavelets direct method for linear integro-differential equations. Appl. Math. Sci. 3, 693–700 (2009)

    MathSciNet  MATH  Google Scholar 

  2. B.K. Alpert, Sparse representation of smooth linear operators. Technical Report YALEU/DCS/RR-814, Yale University, New Haven (1990)

  3. A.Z. Averbuch, V.A. Zheludev, T. Cohen, Multiwavelet frames in signal space originated from Hermite splines. IEEE Trans. Signal Process. 55(3), 797–808 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Bacchelli, S. Papi, Matrix thresholding for multiwavelet image denoising. Numer. Algorithms 33, 41–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Á. Baran, G. Stoyan, Gauss-Legendre elements: a stable, higher order non-conforming finite element family. Computing 79(1), 1–21 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. F.L. Bauer, Beiträge zur Entwicklung numerischer Verfahren für programmgesteuerte Rechenanlagen. II. Direkte Faktorisierung eines Polynoms. Bayer. Akad. Wiss. Math.-Nat. Kl. S.-B. 1956, 163–203 (1956)

    MathSciNet  MATH  Google Scholar 

  7. R.M. Beam, R.F. Warming, Multiresolution analysis and supercompact multiwavelets. SIAM J. Sci. Comput. 22(4), 1238–1268 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Bhati, R.B. Pachori, M. Sharma, V.M. Gadre, Design of time-frequency-localized two-band orthogonal wavelet filter banks. Circuits Syst. Signal Process. 37(8), 3295–3312 (2018)

    Article  MathSciNet  Google Scholar 

  9. N.K. Bose, Applied Multidimensional Systems Theory, 2nd edn. (Springer, Basel, 2017)

    Book  MATH  Google Scholar 

  10. A.G. Bruce, H.Y. Gao, Understanding WaveShrink: Variance and bias estimation. Biometrika 83(4), 727–745 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Calderbank, I. Daubechies, W. Sweldens, B.L. Yeo, Wavelet transforms that map integers to integers. Appl. Comput. Harmon. Anal. 5(3), 332–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. F.M. Callier, On polynomial spectral factorization by symmetric extraction. IEEE Trans. Autom. Control 30(5), 453–464 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64, 95–115 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Charoenlarpnopparut, One-dimensional and multidimensional spectral factorization using Gröbner basis approach. in Asia-Pacific Conference on Communications (2007), pp. 201–204

  15. K.W. Cheung, L.M. Po, Integer multiwavelet transform for lossless image coding. in Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing (2001), pp. 117–120

  16. C.K. Chui, J.A. Lian, A study of orthonormal multi-wavelets. Appl. Numer. Math. 20(3), 273–298 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Cooklev, Regular perfect-reconstruction filter banks and wavelet bases. Ph.D. thesis, Tokyo University of Technology, Tokyo, Japan (1995)

  18. T. Cooklev, A. Nishihara, M. Kato, M. Sablatash, Two-channel multifilter banks and multiwavelets. in IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, vol. 5 (1996), pp. 2769–2772

  19. M. Cotronei, L.B. Montefusco, L. Puccio, Multiwavelet analysis and signal processing. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 45(8), 970–987 (1998)

    Article  MATH  Google Scholar 

  20. I. Daubechies, I. Guskov, P. Schröder, W. Sweldens, Wavelets on irregular point sets. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 357(1760), 2397–2413 (1999). https://doi.org/10.1098/rsta.1999.0439

    Article  MathSciNet  MATH  Google Scholar 

  21. L.T. Dechevsky, N. Grip, J. Gundersen, A new generation of wavelet shrinkage: adaptive strategies based on composition of Lorentz-type thresholding and Besov-type non-thresholding shrinkage. in Proceedings of SPIE 6763, Wavelet Applications in Industrial Processing V, Boston, MA, USA, ed. by F. Truchetet, O. Laligant (2007), pp. 1–14

  22. L.T. Dechevsky, J. Gundersen, N. Grip, Wavelet compression, data fitting and approximation based on adaptive composition of Lorentz-type thresholding and Besov-type non-threshold shrinkage, in Large-Scale Scientific Computing, 7th International Conference, LSSC 2009, Sozopol, Bulgaria, June 4–8, 2009. Revised Papers, vol. 5910, ed. by I. Lirkov, S. Margenov, J. Waśniewski (Springer, Heidelberg, 2009), pp. 738–746

  23. M. Devi, S.R. Verma, An evaluation of system non-homogeneous differential equations using linear Legendre multiwavelet. Indian J. Math. Math. Sci. 13(1), 243–254 (2017)

    Google Scholar 

  24. D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. D.L. Donoho, I.M. Johnstone, Ideal spatial adaption via wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. D.L. Donoho, I.M. Johnstone, Minimax estimation via wavelet shrinkage. Ann. Stat. 26(3), 879–921 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. D.L. Donoho, I.M. Johnstone, G. Kerkyacharian, D. Picard, Wavelet shrinkage: asymptopia? J. R. Stat. Soc. Ser. B (Methodol.) 57(2), 301–369 (1995)

    MathSciNet  MATH  Google Scholar 

  28. T.R. Downie, B.W. Silverman, The discrete multiple wavelet transform and thresholding methods. IEEE Trans. Signal Process. 46(9), 2558–2561 (1998)

    Article  Google Scholar 

  29. M.A. Dritschel, On factorization of trigonometric polynomials. Integral Equ. Oper. Theory 49(1), 11–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Du, X. Xu, X. Dai, Minimum-phase FIR precoder design for multicasting over MIMO frequency-selective channels. J. Electron. (China) 30(4), 319–327 (2013)

    Article  Google Scholar 

  31. S. Durand, J. Froment, Artifact free signal denoising with wavelets. in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 6 (2001), pp. 3685–3688

  32. L. Ephremidze, G. Janashia, E. Lagvilava, A new efficient matrix spectral factorization algorithm. SICE Annu. Conf. 2007, 20–23 (2007)

    MATH  Google Scholar 

  33. L. Ephremidze, F. Saied, I. Spitkovsky, On the algorithmization of Janashia-Lagvilava matrix spectral factorization method. IEEE Trans. Inf. Theory 64(2), 728–737 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Fejér, Über trigonometrische polynome. J. Reine Angew. Math. (Crelles J.) 146, 53–82 (1916)

    MATH  Google Scholar 

  35. R.F.H. Fischer, Sorted spectral factorization of matrix polynomials in MIMO communications. IEEE Trans. Commun. 53(6), 945–951 (2005)

    Article  Google Scholar 

  36. L. Gan, K.K. Ma, On minimal lattice factorizations of symmetric-antisymmetric multifilterbanks. IEEE Trans. Signal Process. 53(2), 606–621 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.S. Geronimo, D.P. Hardin, P.R. Massopust, Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78(3), 373–401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.S. Geronimo, H.J. Woerdeman, Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables. Ann. Math. 160(3), 839–906 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Hansen, L.P.B. Christensen, O. Winther, Computing the minimum-phase filter using the QL-factorization. IEEE Trans. Signal Process. 58(6), 3195–3205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Hao, Q. Shi, Matrix factorizations for reversible integer mapping. IEEE Trans. Signal Process. 49(10), 2314–2324 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Hornbeck, Numerical Methods: QPI Series (Quantum Publishers, Cape Town, 1975)

    Google Scholar 

  42. G. Janashia, E. Lagvilava, L. Ephremidze, A new method of matrix spectral factorization. IEEE Trans. Inf. Theory 57(4), 2318–2326 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Q. Jiang, On the regularity of matrix refinable functions. SIAM J. Math. Anal. 29(5), 1157–1176 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Jing, H. Huang, W. Liu, C. Qi, A general approach for orthogonal 4-tap integer multiwavelet transforms. Math. Probl. Eng. 2010, 1–12 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Kalathil, E. Elias, Prototype filter design approaches for near perfect reconstruction cosine modulated filter banks: a review. J. Signal Process. Syst. 81(2), 183–195 (2015)

    Article  Google Scholar 

  46. A.N. Malyshev, On the acceleration of an algorithm for polynomial factorization. Dokl. Math. 88(2), 586–589 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. A.N. Malyshev, M. Sadkane, The Bauer-type factorization of matrix polynomials revisited and extended. Comput. Math. Math. Phys. 58(7), 1025–1034 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Mohamed, M. Torky, Solution of linear system of partial differential equations by Legendre multiwavelet and Chebyshev multiwavelet. Int. J. Sci. Innov. Math. Res. 2(12), 966–976 (2014)

    Google Scholar 

  49. T.J. Moir, Toeplitz matrices for LTI systems, an illustration of their application to Wiener filters and estimators. Int. J. Syst. Sci. 49(4), 800–817 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Y. Niu, L. Shen, Wavelet denoising using the Pareto optimal threshold. Int. J. Comput. Sci. Netw. Secur. 7, 30–34 (2007)

    Google Scholar 

  51. P. Prandoni, M. Vetterli, Approximation and compression of piecewise smooth functions. Philos. Trans. Math. Phys. Eng. Sci. 357(1760), 2573–2591 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. F. Riesz, Über ein Problem des Herrn Carathéodory. J. Reine Angew. Math (Crelles J.) 146, 83–87 (1916)

    MATH  Google Scholar 

  53. O. Rioul, M. Vetterli, Wavelets and signal processing. IEEE Signal Process. Mag. 8(4), 14–38 (1991)

    Article  Google Scholar 

  54. W. Rudin, The extension problem for positive-definite functions. Ill. J. Math. 7(3), 532–539 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  55. S.Y. Sadov, K.A. McGreer, Legendre polynomials as finite elements in boundary integral equations for transmission problem with periodic piecewise-linear boundary. in Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. Proceedings of 4th International Seminar/Workshop, DIPED-99 (IEEE Cat. No. 99TH8402) (1999), pp. 55–58

  56. Y. She, P. Hao, On the necessity and sufficiency of PLUS factorizations. Linear Algebra Appl. 400, 193–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  57. L. Shen, H.H. Tan, J.Y. Tham, Symmetric-antisymmetric orthonormal multiwavelets and related scalar wavelets. Appl. Comput. Harmon. Anal. 8(3), 258–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  58. C.B. Smith, C.B. Smith, S. Agaian, D. Akopian, A wavelet-denoising approach using polynomial threshold operators. IEEE Signal Process. Lett. 15, 906–909 (2008)

    Article  Google Scholar 

  59. M. Smith, T. Barnwell, Exact reconstruction techniques for tree-structured subband coders. IEEE Trans. Acoust. Speech Signal Process. 34(3), 434–441 (1986)

    Article  Google Scholar 

  60. A.K. Soman, P.P. Vaidyanathan, Coding gain in paraunitary analysis/synthesis systems. IEEE Trans. Signal Process. 41(5), 1824–1835 (1993)

    Article  MATH  Google Scholar 

  61. K.P. Soman, K.I. Ramachandran, Insight into Wavelets: From Theory to Practice (Prentice-Hall of India, New Delhi, 2004)

    Google Scholar 

  62. G. Strang, Linear Algebra and its Applications (Cengage Learning, Boston, 2006)

    MATH  Google Scholar 

  63. G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Wellesley, 1996)

    MATH  Google Scholar 

  64. G. Strang, V. Strela, Orthogonal multiwavelets with vanishing moments. J. Opt. Eng. 33(7), 2104–2107 (1994)

    Article  Google Scholar 

  65. G. Strang, V. Strela, Short wavelets and matrix dilation equations. IEEE Trans. Signal Process. 43(1), 108–115 (1995)

    Article  Google Scholar 

  66. V. Strela, A note on construction of biorthogonal multi-scaling functions. in Wavelets, Multiwavelets, and their Applications (San Diego, CA, 1997), Contemporary Mathematics, vol. 216 (American Mathematical Society, Providence, 1998), pp. 149–157

  67. W. Sweldens, The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  68. H.H. Tan, L.X. Shen, J.Y. Tham, New biorthogonal multiwavelets for image compression. Signal Process. 79(1), 45–65 (1999)

    Article  Google Scholar 

  69. J.Y. Tham, L. Shen, S.L. Lee, H.H. Tan, A general approach for analysis and application of discrete multiwavelet transforms. IEEE Trans. Signal Process. 48(2), 457–464 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  70. K. Thyagarajan, Digital Image Processing with Application to Digital Cinema (Routledge, Abingdon, 2006)

    Google Scholar 

  71. P.P. Vaidyanathan, Theory of optimal orthonormal subband coders. IEEE Trans. Signal Process. 46(6), 1528–1543 (1998)

    Article  Google Scholar 

  72. M. Vetterli, Filter banks allowing perfect reconstruction. Signal Process. 10(3), 219–244 (1986)

    Article  MathSciNet  Google Scholar 

  73. Z. Vostry, A numerical method of matrix spectral factorization. Kybernetika 8(5), 448–470 (1972)

    MathSciNet  MATH  Google Scholar 

  74. M.J. Vuik, Multiwavelets and outlier detection for troubled-cell indication in discontinuous Galerkin methods. Ph.D. thesis, Delft University of Technology, Institute of Applied Mathematics (2014)

  75. M.J. Vuik, J.K. Ryan, Automated parameters for troubled-cell indicators using outlier detection. SIAM J. Sci. Comput. 38(1), A84–A104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  76. L. Wang, J. Wu, L. Jiao, G. Shi, Lossy-to-lossless hyperspectral image compression based on multiplierless reversible integer TDLT/KLT. IEEE Geosci. Remote Sens. Lett. 6(3), 587–591 (2009)

    Article  Google Scholar 

  77. N. Wang, S. Ge, B. Li, L. Peng, Multiple description image compression based on multiwavelets. Int. J. Wavelets Multiresolut. Inf. Process. 17(01), 1850063-1–1850063-22 (2019)

    MathSciNet  MATH  Google Scholar 

  78. Z. Wang, J.G. McWhirter, S. Weiss, Multichannel spectral factorization algorithm using polynomial matrix eigenvalue decomposition. in 49th Asilomar Conference on Signals, Systems and Computers (2015), pp. 1714–1718

  79. S. Wasin, W. Jianzhong, Estimating the support of a scaling vector. SIAM J. Matrix Anal. Appl. 18(1), 63–73 (1997)

    MathSciNet  MATH  Google Scholar 

  80. F.J.W. Whipple, On the behaviour at the poles of a series of Legendre’s functions representing a function with infinite discontinuities. Proc. Lond. Math. Soc. s2–8(1), 213–222 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  81. S.S. Yin, Y. Zhou, S.C. Chan, An efficient method for designing of modulated filter banks with causal-stable IIR filters. J. Signal Process. Syst. 78(2), 187–197 (2015)

    Article  Google Scholar 

  82. D.C. Youla, N.N. Kazanjian, Bauer-type factorization of positive matrices and the theory of matrix polynomials orthogonal on the unit circle. IEEE Trans. Circuits Syst. CAS–25(2), 57–69 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  83. Y. Zhang, N. He, X. Zhen, X. Sun, Image denoising based on the wavelet semi-soft threshold and total variation. in International Conference on Vision, Image and Signal Processing (ICVISP) (2017), pp. 55–62

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their careful reading and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasil Kolev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolev, V., Cooklev, T. & Keinert, F. Design of a Simple Orthogonal Multiwavelet Filter by Matrix Spectral Factorization. Circuits Syst Signal Process 39, 2006–2041 (2020). https://doi.org/10.1007/s00034-019-01240-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01240-9

Keywords