Abstract
We consider the design of an orthogonal symmetric/antisymmetric multiwavelet from its matrix product filter by matrix spectral factorization. As a test problem, we construct a simple matrix product filter with desirable properties and factor it using Bauer’s method, which in this case can be done in closed form. The corresponding orthogonal multiwavelet function is derived using algebraic techniques which allow symmetry to be considered. This leads to the known orthogonal multiwavelet SA1, which can also be derived directly. We also give a lifting scheme for SA1, investigate the influence of the number of significant digits in the calculations, and show some numerical experiments.
Similar content being viewed by others
References
Z. Abbas, S. Vahdati, K.A. Mohd Atan, M.A. Nik Long, Legendre multi-wavelets direct method for linear integro-differential equations. Appl. Math. Sci. 3, 693–700 (2009)
B.K. Alpert, Sparse representation of smooth linear operators. Technical Report YALEU/DCS/RR-814, Yale University, New Haven (1990)
A.Z. Averbuch, V.A. Zheludev, T. Cohen, Multiwavelet frames in signal space originated from Hermite splines. IEEE Trans. Signal Process. 55(3), 797–808 (2007)
S. Bacchelli, S. Papi, Matrix thresholding for multiwavelet image denoising. Numer. Algorithms 33, 41–52 (2003)
Á. Baran, G. Stoyan, Gauss-Legendre elements: a stable, higher order non-conforming finite element family. Computing 79(1), 1–21 (2007)
F.L. Bauer, Beiträge zur Entwicklung numerischer Verfahren für programmgesteuerte Rechenanlagen. II. Direkte Faktorisierung eines Polynoms. Bayer. Akad. Wiss. Math.-Nat. Kl. S.-B. 1956, 163–203 (1956)
R.M. Beam, R.F. Warming, Multiresolution analysis and supercompact multiwavelets. SIAM J. Sci. Comput. 22(4), 1238–1268 (2000)
D. Bhati, R.B. Pachori, M. Sharma, V.M. Gadre, Design of time-frequency-localized two-band orthogonal wavelet filter banks. Circuits Syst. Signal Process. 37(8), 3295–3312 (2018)
N.K. Bose, Applied Multidimensional Systems Theory, 2nd edn. (Springer, Basel, 2017)
A.G. Bruce, H.Y. Gao, Understanding WaveShrink: Variance and bias estimation. Biometrika 83(4), 727–745 (1996)
A. Calderbank, I. Daubechies, W. Sweldens, B.L. Yeo, Wavelet transforms that map integers to integers. Appl. Comput. Harmon. Anal. 5(3), 332–369 (1998)
F.M. Callier, On polynomial spectral factorization by symmetric extraction. IEEE Trans. Autom. Control 30(5), 453–464 (1985)
C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64, 95–115 (1907)
C. Charoenlarpnopparut, One-dimensional and multidimensional spectral factorization using Gröbner basis approach. in Asia-Pacific Conference on Communications (2007), pp. 201–204
K.W. Cheung, L.M. Po, Integer multiwavelet transform for lossless image coding. in Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing (2001), pp. 117–120
C.K. Chui, J.A. Lian, A study of orthonormal multi-wavelets. Appl. Numer. Math. 20(3), 273–298 (1996)
T. Cooklev, Regular perfect-reconstruction filter banks and wavelet bases. Ph.D. thesis, Tokyo University of Technology, Tokyo, Japan (1995)
T. Cooklev, A. Nishihara, M. Kato, M. Sablatash, Two-channel multifilter banks and multiwavelets. in IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, vol. 5 (1996), pp. 2769–2772
M. Cotronei, L.B. Montefusco, L. Puccio, Multiwavelet analysis and signal processing. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 45(8), 970–987 (1998)
I. Daubechies, I. Guskov, P. Schröder, W. Sweldens, Wavelets on irregular point sets. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 357(1760), 2397–2413 (1999). https://doi.org/10.1098/rsta.1999.0439
L.T. Dechevsky, N. Grip, J. Gundersen, A new generation of wavelet shrinkage: adaptive strategies based on composition of Lorentz-type thresholding and Besov-type non-thresholding shrinkage. in Proceedings of SPIE 6763, Wavelet Applications in Industrial Processing V, Boston, MA, USA, ed. by F. Truchetet, O. Laligant (2007), pp. 1–14
L.T. Dechevsky, J. Gundersen, N. Grip, Wavelet compression, data fitting and approximation based on adaptive composition of Lorentz-type thresholding and Besov-type non-threshold shrinkage, in Large-Scale Scientific Computing, 7th International Conference, LSSC 2009, Sozopol, Bulgaria, June 4–8, 2009. Revised Papers, vol. 5910, ed. by I. Lirkov, S. Margenov, J. Waśniewski (Springer, Heidelberg, 2009), pp. 738–746
M. Devi, S.R. Verma, An evaluation of system non-homogeneous differential equations using linear Legendre multiwavelet. Indian J. Math. Math. Sci. 13(1), 243–254 (2017)
D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)
D.L. Donoho, I.M. Johnstone, Ideal spatial adaption via wavelet shrinkage. Biometrika 81(3), 425–455 (1994)
D.L. Donoho, I.M. Johnstone, Minimax estimation via wavelet shrinkage. Ann. Stat. 26(3), 879–921 (1998)
D.L. Donoho, I.M. Johnstone, G. Kerkyacharian, D. Picard, Wavelet shrinkage: asymptopia? J. R. Stat. Soc. Ser. B (Methodol.) 57(2), 301–369 (1995)
T.R. Downie, B.W. Silverman, The discrete multiple wavelet transform and thresholding methods. IEEE Trans. Signal Process. 46(9), 2558–2561 (1998)
M.A. Dritschel, On factorization of trigonometric polynomials. Integral Equ. Oper. Theory 49(1), 11–42 (2004)
B. Du, X. Xu, X. Dai, Minimum-phase FIR precoder design for multicasting over MIMO frequency-selective channels. J. Electron. (China) 30(4), 319–327 (2013)
S. Durand, J. Froment, Artifact free signal denoising with wavelets. in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 6 (2001), pp. 3685–3688
L. Ephremidze, G. Janashia, E. Lagvilava, A new efficient matrix spectral factorization algorithm. SICE Annu. Conf. 2007, 20–23 (2007)
L. Ephremidze, F. Saied, I. Spitkovsky, On the algorithmization of Janashia-Lagvilava matrix spectral factorization method. IEEE Trans. Inf. Theory 64(2), 728–737 (2018)
L. Fejér, Über trigonometrische polynome. J. Reine Angew. Math. (Crelles J.) 146, 53–82 (1916)
R.F.H. Fischer, Sorted spectral factorization of matrix polynomials in MIMO communications. IEEE Trans. Commun. 53(6), 945–951 (2005)
L. Gan, K.K. Ma, On minimal lattice factorizations of symmetric-antisymmetric multifilterbanks. IEEE Trans. Signal Process. 53(2), 606–621 (2005)
J.S. Geronimo, D.P. Hardin, P.R. Massopust, Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78(3), 373–401 (1994)
J.S. Geronimo, H.J. Woerdeman, Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables. Ann. Math. 160(3), 839–906 (2004)
M. Hansen, L.P.B. Christensen, O. Winther, Computing the minimum-phase filter using the QL-factorization. IEEE Trans. Signal Process. 58(6), 3195–3205 (2010)
P. Hao, Q. Shi, Matrix factorizations for reversible integer mapping. IEEE Trans. Signal Process. 49(10), 2314–2324 (2001)
R. Hornbeck, Numerical Methods: QPI Series (Quantum Publishers, Cape Town, 1975)
G. Janashia, E. Lagvilava, L. Ephremidze, A new method of matrix spectral factorization. IEEE Trans. Inf. Theory 57(4), 2318–2326 (2011)
Q. Jiang, On the regularity of matrix refinable functions. SIAM J. Math. Anal. 29(5), 1157–1176 (1998)
M. Jing, H. Huang, W. Liu, C. Qi, A general approach for orthogonal 4-tap integer multiwavelet transforms. Math. Probl. Eng. 2010, 1–12 (2010)
S. Kalathil, E. Elias, Prototype filter design approaches for near perfect reconstruction cosine modulated filter banks: a review. J. Signal Process. Syst. 81(2), 183–195 (2015)
A.N. Malyshev, On the acceleration of an algorithm for polynomial factorization. Dokl. Math. 88(2), 586–589 (2013)
A.N. Malyshev, M. Sadkane, The Bauer-type factorization of matrix polynomials revisited and extended. Comput. Math. Math. Phys. 58(7), 1025–1034 (2018)
M. Mohamed, M. Torky, Solution of linear system of partial differential equations by Legendre multiwavelet and Chebyshev multiwavelet. Int. J. Sci. Innov. Math. Res. 2(12), 966–976 (2014)
T.J. Moir, Toeplitz matrices for LTI systems, an illustration of their application to Wiener filters and estimators. Int. J. Syst. Sci. 49(4), 800–817 (2018)
Y. Niu, L. Shen, Wavelet denoising using the Pareto optimal threshold. Int. J. Comput. Sci. Netw. Secur. 7, 30–34 (2007)
P. Prandoni, M. Vetterli, Approximation and compression of piecewise smooth functions. Philos. Trans. Math. Phys. Eng. Sci. 357(1760), 2573–2591 (1999)
F. Riesz, Über ein Problem des Herrn Carathéodory. J. Reine Angew. Math (Crelles J.) 146, 83–87 (1916)
O. Rioul, M. Vetterli, Wavelets and signal processing. IEEE Signal Process. Mag. 8(4), 14–38 (1991)
W. Rudin, The extension problem for positive-definite functions. Ill. J. Math. 7(3), 532–539 (1963)
S.Y. Sadov, K.A. McGreer, Legendre polynomials as finite elements in boundary integral equations for transmission problem with periodic piecewise-linear boundary. in Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. Proceedings of 4th International Seminar/Workshop, DIPED-99 (IEEE Cat. No. 99TH8402) (1999), pp. 55–58
Y. She, P. Hao, On the necessity and sufficiency of PLUS factorizations. Linear Algebra Appl. 400, 193–202 (2005)
L. Shen, H.H. Tan, J.Y. Tham, Symmetric-antisymmetric orthonormal multiwavelets and related scalar wavelets. Appl. Comput. Harmon. Anal. 8(3), 258–279 (2000)
C.B. Smith, C.B. Smith, S. Agaian, D. Akopian, A wavelet-denoising approach using polynomial threshold operators. IEEE Signal Process. Lett. 15, 906–909 (2008)
M. Smith, T. Barnwell, Exact reconstruction techniques for tree-structured subband coders. IEEE Trans. Acoust. Speech Signal Process. 34(3), 434–441 (1986)
A.K. Soman, P.P. Vaidyanathan, Coding gain in paraunitary analysis/synthesis systems. IEEE Trans. Signal Process. 41(5), 1824–1835 (1993)
K.P. Soman, K.I. Ramachandran, Insight into Wavelets: From Theory to Practice (Prentice-Hall of India, New Delhi, 2004)
G. Strang, Linear Algebra and its Applications (Cengage Learning, Boston, 2006)
G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Wellesley, 1996)
G. Strang, V. Strela, Orthogonal multiwavelets with vanishing moments. J. Opt. Eng. 33(7), 2104–2107 (1994)
G. Strang, V. Strela, Short wavelets and matrix dilation equations. IEEE Trans. Signal Process. 43(1), 108–115 (1995)
V. Strela, A note on construction of biorthogonal multi-scaling functions. in Wavelets, Multiwavelets, and their Applications (San Diego, CA, 1997), Contemporary Mathematics, vol. 216 (American Mathematical Society, Providence, 1998), pp. 149–157
W. Sweldens, The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1998)
H.H. Tan, L.X. Shen, J.Y. Tham, New biorthogonal multiwavelets for image compression. Signal Process. 79(1), 45–65 (1999)
J.Y. Tham, L. Shen, S.L. Lee, H.H. Tan, A general approach for analysis and application of discrete multiwavelet transforms. IEEE Trans. Signal Process. 48(2), 457–464 (2000)
K. Thyagarajan, Digital Image Processing with Application to Digital Cinema (Routledge, Abingdon, 2006)
P.P. Vaidyanathan, Theory of optimal orthonormal subband coders. IEEE Trans. Signal Process. 46(6), 1528–1543 (1998)
M. Vetterli, Filter banks allowing perfect reconstruction. Signal Process. 10(3), 219–244 (1986)
Z. Vostry, A numerical method of matrix spectral factorization. Kybernetika 8(5), 448–470 (1972)
M.J. Vuik, Multiwavelets and outlier detection for troubled-cell indication in discontinuous Galerkin methods. Ph.D. thesis, Delft University of Technology, Institute of Applied Mathematics (2014)
M.J. Vuik, J.K. Ryan, Automated parameters for troubled-cell indicators using outlier detection. SIAM J. Sci. Comput. 38(1), A84–A104 (2016)
L. Wang, J. Wu, L. Jiao, G. Shi, Lossy-to-lossless hyperspectral image compression based on multiplierless reversible integer TDLT/KLT. IEEE Geosci. Remote Sens. Lett. 6(3), 587–591 (2009)
N. Wang, S. Ge, B. Li, L. Peng, Multiple description image compression based on multiwavelets. Int. J. Wavelets Multiresolut. Inf. Process. 17(01), 1850063-1–1850063-22 (2019)
Z. Wang, J.G. McWhirter, S. Weiss, Multichannel spectral factorization algorithm using polynomial matrix eigenvalue decomposition. in 49th Asilomar Conference on Signals, Systems and Computers (2015), pp. 1714–1718
S. Wasin, W. Jianzhong, Estimating the support of a scaling vector. SIAM J. Matrix Anal. Appl. 18(1), 63–73 (1997)
F.J.W. Whipple, On the behaviour at the poles of a series of Legendre’s functions representing a function with infinite discontinuities. Proc. Lond. Math. Soc. s2–8(1), 213–222 (1910)
S.S. Yin, Y. Zhou, S.C. Chan, An efficient method for designing of modulated filter banks with causal-stable IIR filters. J. Signal Process. Syst. 78(2), 187–197 (2015)
D.C. Youla, N.N. Kazanjian, Bauer-type factorization of positive matrices and the theory of matrix polynomials orthogonal on the unit circle. IEEE Trans. Circuits Syst. CAS–25(2), 57–69 (1978)
Y. Zhang, N. He, X. Zhen, X. Sun, Image denoising based on the wavelet semi-soft threshold and total variation. in International Conference on Vision, Image and Signal Processing (ICVISP) (2017), pp. 55–62
Acknowledgements
The authors would like to thank the anonymous reviewers for their careful reading and helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kolev, V., Cooklev, T. & Keinert, F. Design of a Simple Orthogonal Multiwavelet Filter by Matrix Spectral Factorization. Circuits Syst Signal Process 39, 2006–2041 (2020). https://doi.org/10.1007/s00034-019-01240-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-019-01240-9