Abstract
In this paper we are interested in quantified propositional formulas in conjunctive normal form with “clauses” of arbitrary shapes. i.e., consisting of applying arbitrary relations to variables. We study the complexity of the evaluation problem, the model checking problem, the equivalence problem, and the counting problem for such formulas, both with and without a bound on the number of quantifier alternations. For each of these computational goals we get full complexity classifications: We determine the complexity of each of these problems depending on the set of relations allowed in the input formulas. Thus, on the one hand we exhibit syntactic restrictions of the original problems that are still computationally hard, and on the other hand we identify non-trivial subcases that admit efficient algorithms.
Similar content being viewed by others
References
Agrawal, M.: The first-order isomorphism theorem. In: Proceedings 21st Foundations of Software Technology and Theoretical Computer Science. Lecture Notes in Computer Science, pp. 58–69. Springer, Berlin (2001)
Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The complexity of satisfiability problems: Refining Schaefer’s theorem. In: Proceedings of the 30th International Symposium on Mathematical Foundations of Computer Science, pp. 71–82 (2005)
Bauland, M., Chapdelaine, P., Creignou, N., Hermann, M., Vollmer, H.: An algebraic approach to the complexity of generalized conjunctive queries. In: Proceedings 7th International Conference on Theory and Applications of Satisfiability Testing, Revised Selected Papers. Lecture Notes in Computer Science, vol. 3542, pp. 30–45. Springer, Berlin (2005)
Böhler, E., Hemaspaandra, E., Reith, S., Vollmer, H.: Equivalence and isomorphism for Boolean constraint satisfaction. In: Computer Science Logic. Lecture Notes in Computer Science, vol. 2471, pp. 412–426. Springer, Berlin (2002)
Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. SIGACT News 34(4), 38–52 (2003)
Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part II: Constraint satisfaction problems. SIGACT News 35(1), 22–35 (2004)
Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-clones. Inf. Process. Lett. 96, 59–66 (2005)
Börner, F., Krokhin, A., Bulatov, A., Jeavons, P.: Quantified constraints and surjective polymorphisms. Technical Report PRG-RR-02-11, Computing Laboratory, University of Oxford, UK (2002)
Börner, F., Bulatov, A., Jeavons, P., Krokhin, A.: Quantified constraints: algorithms and complexity. In: Proceedings 17th International Workshop on Computer Science Logic. Lecture Notes in Computer Science, vol. 2803. Springer, Berlin (2003)
Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53(1), 66–120 (2006)
Bulatov, A., Dalmau, V.: Towards a dichotomy theorem for the counting constraint satisfaction problem. Inf. Comput. 205(5), 651–678 (2007)
Chen, H.: Collapsibility and consistency in quantified constraint satisfaction. In: Proceedings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial, pp. 155–160. AAAI Press, Menlo Prak (2004)
Chen, H.: The computational complexity of quantified constraint satisfaction. Ph.D. thesis, Cornell Universtiy (2004)
Chen, H.: A rendezvous of logic, complexity, and algebra. ACM-SIGACT Newsl. 37(4), 85–114 (2006)
Chen, H., Dalmau, V.: From pebble games to tractability: An ambidextrous consistency algorithm for quantified constraint satisfaction. In: Proceedings 19th International Workshop on Computer Science Logic. Lecture Notes in Computer Science, vol. 3634, pp. 232–247. Springer, Berlin (2005)
Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings 3rd Symposium on Theory of Computing, pp. 151–158. ACM, New York (1971)
Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Inf. Comput. 125, 1–12 (1996)
Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. Monographs on Discrete Applied Mathematics. SIAM, Philadelphia (2001)
Creignou, N., Kolaitis, P., Vollmer, H. (Eds.): Complexity of Constraints—An Overview of Current Research Themes. Lecture Notes in Computer Science, vol. 5250. Springer, Berlin (2008)
Dalmau, V.: Some dichotomy theorems on constant-free quantified boolean formulas. Technical Report LSI-97-43-R, Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya (1997)
Dalmau, V.: Computational complexity of problems over generalized formulas. Ph.D. thesis, Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya (2000)
Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for counting complexity classes. Theor. Comput. Sci. 340(3), 496–513 (2005)
Hemaspaandra, E.: Dichotomy theorems for alternation-bounded quantified boolean formulas. CoRR, cs.CC/0406006 (2004)
Hemaspaandra, L., Vollmer, H.: The satanic notations: counting classes beyond #P and other definitional adventures. Complexity Theory Column 8, ACM-SIGACT News 26(1), 2–13 (1995)
Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. ACM 44(4), 527–548 (1997)
Kleine Büning, H., Lettmann, T.: Propositional Logic: Deduction and Algorithms. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (1999)
Ladner, R.E.: Polynomial space counting problems. SIAM J. Comput. 18(6), 1087–1097 (1989)
Lau, D.: Function Algebras on Finite Sets. Monographs in Mathematics. Springer, Berlin (2006)
Levin, L.A.: Universal sorting problems. Probl. Pered. Inf. 9(3), 115–116 (1973). English translation: Problems Inf. Transm. 9(3), 265–266 (1993)
Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential time. In: Proceedings 13th Symposium on Switching and Automata Theory, pp. 125–129. IEEE Computer Society Press, Los Alamitos (1972)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge (1997)
Pöschel, R.: Galois connection for operations and relations. Technical Report MATH-LA-8-2001, Technische Universität Dresden (2001)
Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren. Deutscher Verlag der Wissenschaften, Berlin (1979)
Post, E.L.: Introduction to a general theory of elementary propositions. Am. J. Math. 43, 163–185 (1921)
Post, E.: The two-valued iterative systems of mathematical logic. Ann. Math. Stud. 5, 1–122 (1941)
Reingold, O.: Undirected ST-connectivity in log-space. In: Proceedings 37th Symposium on Theory of Computing, pp. 376–385. ACM, New York (2005)
Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th Symposium on Theory of Computing, pp. 216–226. ACM, New York (1978)
Schnoor, H., Schnoor, I.: Partial polymorphisms and constraint satisfaction problems. In: [19], pp. 229–254
Stockmeyer, L.: The polynomial-time hierarchy. Theor. Comput. Sci. 3, 1–22 (1977)
Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proceedings 5th ACM Symposium on the Theory of Computing, pp. 1–9. ACM, New York (1973)
Toda, S.: Computational complexity of counting complexity classes. Ph.D. thesis, Tokyo Institute of Technology, Department of Computer Science, Tokyo (1991)
Toda, S.: PP is as hard as the polynomial time hierarchy. SIAM J. Comput. 20, 865–877 (1991)
Toda, S., Watanabe, O.: Polynomial time 1-Turing reductions from #PH to #P. Theor. Comput. Sci. 100, 205–221 (1992)
Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)
Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 411–421 (1979)
Vollmer, H.: Komplexitätsklassen von Funktionen. Ph.D. thesis, Universität Würzburg, Institut für Informatik, Germany (1994)
Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theor. Comput. Sci. 3, 23–33 (1977)
Zankó, V.: #P-completeness via many-one reductions. Int. J. Found. Comput. Sci. 2, 77–82 (1991)
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported in part by the following grants: DFG Vo 630/5-1, 630/5-2, ÉGIDE 05835SH, DAAD D/0205776.
Rights and permissions
About this article
Cite this article
Bauland, M., Böhler, E., Creignou, N. et al. The Complexity of Problems for Quantified Constraints. Theory Comput Syst 47, 454–490 (2010). https://doi.org/10.1007/s00224-009-9194-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00224-009-9194-6