Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Complexity of Problems for Quantified Constraints

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper we are interested in quantified propositional formulas in conjunctive normal form with “clauses” of arbitrary shapes. i.e., consisting of applying arbitrary relations to variables. We study the complexity of the evaluation problem, the model checking problem, the equivalence problem, and the counting problem for such formulas, both with and without a bound on the number of quantifier alternations. For each of these computational goals we get full complexity classifications: We determine the complexity of each of these problems depending on the set of relations allowed in the input formulas. Thus, on the one hand we exhibit syntactic restrictions of the original problems that are still computationally hard, and on the other hand we identify non-trivial subcases that admit efficient algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, M.: The first-order isomorphism theorem. In: Proceedings 21st Foundations of Software Technology and Theoretical Computer Science. Lecture Notes in Computer Science, pp. 58–69. Springer, Berlin (2001)

    Google Scholar 

  2. Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The complexity of satisfiability problems: Refining Schaefer’s theorem. In: Proceedings of the 30th International Symposium on Mathematical Foundations of Computer Science, pp. 71–82 (2005)

  3. Bauland, M., Chapdelaine, P., Creignou, N., Hermann, M., Vollmer, H.: An algebraic approach to the complexity of generalized conjunctive queries. In: Proceedings 7th International Conference on Theory and Applications of Satisfiability Testing, Revised Selected Papers. Lecture Notes in Computer Science, vol. 3542, pp. 30–45. Springer, Berlin (2005)

    Google Scholar 

  4. Böhler, E., Hemaspaandra, E., Reith, S., Vollmer, H.: Equivalence and isomorphism for Boolean constraint satisfaction. In: Computer Science Logic. Lecture Notes in Computer Science, vol. 2471, pp. 412–426. Springer, Berlin (2002)

    Chapter  Google Scholar 

  5. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. SIGACT News 34(4), 38–52 (2003)

    Article  Google Scholar 

  6. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part II: Constraint satisfaction problems. SIGACT News 35(1), 22–35 (2004)

    Article  Google Scholar 

  7. Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-clones. Inf. Process. Lett. 96, 59–66 (2005)

    Article  MATH  Google Scholar 

  8. Börner, F., Krokhin, A., Bulatov, A., Jeavons, P.: Quantified constraints and surjective polymorphisms. Technical Report PRG-RR-02-11, Computing Laboratory, University of Oxford, UK (2002)

  9. Börner, F., Bulatov, A., Jeavons, P., Krokhin, A.: Quantified constraints: algorithms and complexity. In: Proceedings 17th International Workshop on Computer Science Logic. Lecture Notes in Computer Science, vol. 2803. Springer, Berlin (2003)

    Google Scholar 

  10. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53(1), 66–120 (2006)

    MathSciNet  Google Scholar 

  11. Bulatov, A., Dalmau, V.: Towards a dichotomy theorem for the counting constraint satisfaction problem. Inf. Comput. 205(5), 651–678 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, H.: Collapsibility and consistency in quantified constraint satisfaction. In: Proceedings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial, pp. 155–160. AAAI Press, Menlo Prak (2004)

    Google Scholar 

  13. Chen, H.: The computational complexity of quantified constraint satisfaction. Ph.D. thesis, Cornell Universtiy (2004)

  14. Chen, H.: A rendezvous of logic, complexity, and algebra. ACM-SIGACT Newsl. 37(4), 85–114 (2006)

    Article  Google Scholar 

  15. Chen, H., Dalmau, V.: From pebble games to tractability: An ambidextrous consistency algorithm for quantified constraint satisfaction. In: Proceedings 19th International Workshop on Computer Science Logic. Lecture Notes in Computer Science, vol. 3634, pp. 232–247. Springer, Berlin (2005)

    Chapter  Google Scholar 

  16. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings 3rd Symposium on Theory of Computing, pp. 151–158. ACM, New York (1971)

    Google Scholar 

  17. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Inf. Comput. 125, 1–12 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. Monographs on Discrete Applied Mathematics. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  19. Creignou, N., Kolaitis, P., Vollmer, H. (Eds.): Complexity of Constraints—An Overview of Current Research Themes. Lecture Notes in Computer Science, vol. 5250. Springer, Berlin (2008)

    MATH  Google Scholar 

  20. Dalmau, V.: Some dichotomy theorems on constant-free quantified boolean formulas. Technical Report LSI-97-43-R, Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya (1997)

  21. Dalmau, V.: Computational complexity of problems over generalized formulas. Ph.D. thesis, Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya (2000)

  22. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for counting complexity classes. Theor. Comput. Sci. 340(3), 496–513 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hemaspaandra, E.: Dichotomy theorems for alternation-bounded quantified boolean formulas. CoRR, cs.CC/0406006 (2004)

  24. Hemaspaandra, L., Vollmer, H.: The satanic notations: counting classes beyond #P and other definitional adventures. Complexity Theory Column 8, ACM-SIGACT News 26(1), 2–13 (1995)

    Google Scholar 

  25. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. ACM 44(4), 527–548 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kleine Büning, H., Lettmann, T.: Propositional Logic: Deduction and Algorithms. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  27. Ladner, R.E.: Polynomial space counting problems. SIAM J. Comput. 18(6), 1087–1097 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lau, D.: Function Algebras on Finite Sets. Monographs in Mathematics. Springer, Berlin (2006)

    MATH  Google Scholar 

  29. Levin, L.A.: Universal sorting problems. Probl. Pered. Inf. 9(3), 115–116 (1973). English translation: Problems Inf. Transm. 9(3), 265–266 (1993)

    MATH  Google Scholar 

  30. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential time. In: Proceedings 13th Symposium on Switching and Automata Theory, pp. 125–129. IEEE Computer Society Press, Los Alamitos (1972)

    Chapter  Google Scholar 

  31. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  32. Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  33. Pöschel, R.: Galois connection for operations and relations. Technical Report MATH-LA-8-2001, Technische Universität Dresden (2001)

  34. Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren. Deutscher Verlag der Wissenschaften, Berlin (1979)

    Google Scholar 

  35. Post, E.L.: Introduction to a general theory of elementary propositions. Am. J. Math. 43, 163–185 (1921)

    Article  MATH  MathSciNet  Google Scholar 

  36. Post, E.: The two-valued iterative systems of mathematical logic. Ann. Math. Stud. 5, 1–122 (1941)

    MathSciNet  Google Scholar 

  37. Reingold, O.: Undirected ST-connectivity in log-space. In: Proceedings 37th Symposium on Theory of Computing, pp. 376–385. ACM, New York (2005)

    Google Scholar 

  38. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th Symposium on Theory of Computing, pp. 216–226. ACM, New York (1978)

    Google Scholar 

  39. Schnoor, H., Schnoor, I.: Partial polymorphisms and constraint satisfaction problems. In: [19], pp. 229–254

  40. Stockmeyer, L.: The polynomial-time hierarchy. Theor. Comput. Sci. 3, 1–22 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  41. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proceedings 5th ACM Symposium on the Theory of Computing, pp. 1–9. ACM, New York (1973)

    Google Scholar 

  42. Toda, S.: Computational complexity of counting complexity classes. Ph.D. thesis, Tokyo Institute of Technology, Department of Computer Science, Tokyo (1991)

  43. Toda, S.: PP is as hard as the polynomial time hierarchy. SIAM J. Comput. 20, 865–877 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  44. Toda, S., Watanabe, O.: Polynomial time 1-Turing reductions from #PH to #P. Theor. Comput. Sci. 100, 205–221 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  45. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  46. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 411–421 (1979)

    Article  MathSciNet  Google Scholar 

  47. Vollmer, H.: Komplexitätsklassen von Funktionen. Ph.D. thesis, Universität Würzburg, Institut für Informatik, Germany (1994)

  48. Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theor. Comput. Sci. 3, 23–33 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  49. Zankó, V.: #P-completeness via many-one reductions. Int. J. Found. Comput. Sci. 2, 77–82 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heribert Vollmer.

Additional information

Supported in part by the following grants: DFG Vo 630/5-1, 630/5-2, ÉGIDE 05835SH, DAAD D/0205776.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauland, M., Böhler, E., Creignou, N. et al. The Complexity of Problems for Quantified Constraints. Theory Comput Syst 47, 454–490 (2010). https://doi.org/10.1007/s00224-009-9194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-009-9194-6

Keywords