Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Preparation of pH-Responsive Alginate–Chitosan Microspheres for L-Valine Loading and Their Effects on the A40926 Production

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The glycopeptide A40926 biosynthesized by Nonomuraea gerenzanensis is a precursor of the second generation glycopeptide antibiotic dalbavancin. The skeleton of this glycopeptide consists of seven amino acids and is biosynthesized by the NRPS gene module. L-valine, a branched amino acid, is also a significant precursor for A40926 production. This study details the use of pH-responsive alginate–chitosan microspheres loaded with L-valine prepared by internal emulsification gelation. The effects of process and formulation variables on microsphere size, loading capacity, and encapsulation efficiency were investigated. Then, effects on A40926 production by the pH-responsive microspheres were evaluated in a 10-L fermenter. Results demonstrated that use of the pH-responsive microspheres could improve A40926 yield from 465 to 602 mg L−1 in a 10-L scale fermenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yim G, Thaker MN, Koteva K, Wright G (2014) Glycopeptide antibiotic biosynthesis. J Antibiot 67(1):31–41. https://doi.org/10.1038/ja.2013.117

    Article  CAS  Google Scholar 

  2. Marschall E, Cryle MJ, Tailhades J (2019) Biological, chemical, and biochemical strategies for modifying glycopeptide antibiotics. J Biol Chem. https://doi.org/10.1074/jbc.REV119.006349

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sosio M, Stinchi S, Beltrametti F, Lazzarini A, Donadio S (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by nonomuraea species. Chem Biol 10(6):541–549. https://doi.org/10.1016/s1074-5521(03)00120-0

    Article  PubMed  CAS  Google Scholar 

  4. Sosio M, Donadio S (2006) Understanding and manipulating glycopeptide pathways: the example of the dalbavancin precursor A40926. J Ind Microbiol Biotechnol 33(7):569–576. https://doi.org/10.1007/s10295-006-0124-1

    Article  PubMed  CAS  Google Scholar 

  5. Alduina R, Sosio M, Donadio S (2018) Complex regulatory networks governing production of the glycopeptide A40926. Antibiotics 7(2):30. https://doi.org/10.3390/antibiotics7020030

    Article  PubMed Central  CAS  Google Scholar 

  6. Dalmastri C, Gastaldo L, Marcone GL, Binda E, Congiu T, Marinelli F (2016) Classification of Nonomuraea sp. ATCC 39727, an actinomycete that produces the glycopeptide antibiotic A40926, as Nonomuraea gerenzanensis sp. nov. Int J Syst Evol Microbiol 66(2):912–921. https://doi.org/10.1099/ijsem.0.000810

    Article  PubMed  CAS  Google Scholar 

  7. Marcone GL, Binda E, Berini F, Marinelli F (2018) Old and new glycopeptide antibiotics: from product to gene and back in the post-genomic era. Biotechnol Adv 36(2):534–554. https://doi.org/10.1016/j.biotechadv.2018.02.009

    Article  PubMed  CAS  Google Scholar 

  8. Gunnarsson N, Bruheim P, Nielsen J (2003) Production of the glycopeptide antibiotic A40926 by Nonomuraea sp. ATCC 39727: influence of medium composition in batch fermentation. J Ind Microbiol Biotechnol 30(3):150–156. https://doi.org/10.1007/s10295-003-0024-6

    Article  PubMed  CAS  Google Scholar 

  9. Gunnarsson N, Bruheim P, Nielsen J (2004) Glucose metabolism in the antibiotic producing actinomycete Nonomuraea sp. ATCC 39727. Biotechnol Bioeng 88(5):652–663. https://doi.org/10.1002/bit.20279

    Article  PubMed  CAS  Google Scholar 

  10. Technikova-Dobrova Z, Damiano F, Tredici SM, Vigliotta G, di Summa R, Palese L, Abbrescia A, Labonia N, Gnoni GV, Alifano P (2004) Design of mineral medium for growth of Actinomadura sp. ATCC 39727, producer of the glycopeptide A40926: effects of calcium ions and nitrogen sources. Appl Microbiol Biotechnol 65(6):671–677. https://doi.org/10.1007/s00253-004-1626-2

    Article  PubMed  CAS  Google Scholar 

  11. Chen M, Xu T, Zhang G, Zhao J, Gao Z, Zhang C (2016) High-yield production of lipoglycopeptide antibiotic A40926 using a mutant strain Nonomuraea sp. DP-13 in optimized medium. Prep Biochem Biotechnol 46(2):171–175. https://doi.org/10.1080/10826068.2015.1015561

    Article  PubMed  CAS  Google Scholar 

  12. Beltrametti F, Jovetic S, Feroggio M, Gastaldo L, Selva E, Marinelli F (2004) Valine influences production and complex composition of glycopeptide antibiotic A40926 in fermentations of Nonomuraea sp. ATCC 39727. J Antibiot 57(1):37–44. https://doi.org/10.7164/antibiotics.57.37

    Article  CAS  Google Scholar 

  13. Taurino C, Frattini L, Marcone GL, Gastaldo L, Marinelli F (2011) Actinoplanes teichomyceticus ATCC 31121 as a cell factory for producing teicoplanin. Microb Cell Fact 10:82. https://doi.org/10.1186/1475-2859-10-82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Diaz-Perez AL, Diaz-Perez C, Campos-Garcia J (2016) Bacterial L-leucine catabolism as a source of secondary metabolites. Rev Environ Sci Bio/Technol 15(1):1–29. https://doi.org/10.1007/s11157-015-9385-3

    Article  Google Scholar 

  15. Ser HL, Law JWF, Chaiyakunapruk N, Jacob SA, Palanisamy UD, Chan KG, Goh BH, Lee LH (2016) Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: a systematic review. Front Microbiol 7:522. https://doi.org/10.3389/fmicb.2016.00522

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lu CY, Zhang XJ, Jiang M, Bai LQ (2016) Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metab Eng 35:129–137. https://doi.org/10.1016/j.ymben.2016.02.012

    Article  PubMed  CAS  Google Scholar 

  17. Li ZL, Wang YH, Chu J, Zhuang YP, Zhang SL (2009) Effect of branched-chain amino acids, valine, isoleucine and leucine on the biosythesis of bitespiramycin 4"-O-acylspiramycins. Braz J Microbiol 40(4):734–746. https://doi.org/10.1590/S1517-83822009000400003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sun X, Liu C, Omer AM, Yang LY, Ouyang XK (2019) Dual-layered pH-sensitive alginate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5-fluorouracil. Int J Biol Macromol 132:487–494. https://doi.org/10.1016/j.ijbiomac.2019.03.225

    Article  PubMed  CAS  Google Scholar 

  19. Hill M, Twigg M, Sheridan EA, Hardy JG, Elborn JS, Taggart CC, Scott CJ, Migaud ME (2019) Alginate/chitosan particle-based drug delivery systems for pulmonary applications. Pharmaceutics 11(8):379. https://doi.org/10.3390/pharmaceutics11080379

    Article  PubMed Central  CAS  Google Scholar 

  20. Zou X, Zhao X, Ye L, Wang Q, Li H (2015) Preparation and drug release behavior of pH-responsive bovine serum albumin-loaded chitosan microspheres. J Ind Eng Chem 21:1389–1397. https://doi.org/10.1016/j.jiec.2014.06.012

    Article  CAS  Google Scholar 

  21. Afzal S, Maswal M, Dar AA (2018) Rheological behavior of pH responsive composite hydrogels of chitosan and alginate: characterization and its use in encapsulation of citral. Colloids Surf B 169:99–106. https://doi.org/10.1016/j.colsurfb.2018.05.002

    Article  CAS  Google Scholar 

  22. Cao J, Cheng J, Xi S, Qi X, Shen S, Ge Y (2019) Alginate/chitosan microcapsules for in-situ delivery of the protein, interleukin-1 receptor antagonist (IL-1Ra), for the treatment of dextran sulfate sodium (DSS)-induced colitis in a mouse model. Eur J Pharm Biopharm 137:112–121. https://doi.org/10.1016/j.ejpb.2019.02.011

    Article  PubMed  CAS  Google Scholar 

  23. Chen T, Li S, Zhu W, Liang Z, Zeng Q (2019) Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. J Microencapsul 36(1):96–107. https://doi.org/10.1080/02652048.2019.1604846

    Article  PubMed  CAS  Google Scholar 

  24. Pereira ADS, Diniz MM, De Jong G, Gama Filho HS, Dos Anjos MJ, Finotelli PV, Fontes-Sant'Ana GC, Amaral PFF (2019) Chitosan-alginate beads as encapsulating agents for Yarrowia lipolytica lipase: morphological, physico-chemical and kinetic characteristics. Int J Biol Macromol 139:621–630. https://doi.org/10.1016/j.ijbiomac.2019.08.009

    Article  PubMed  CAS  Google Scholar 

  25. Raghu S, Pennathur G (2018) Enhancing the stability of a carboxylesterase by entrapment in chitosan coated alginate beads. Turk J Biol 42(4):307–318. https://doi.org/10.3906/biy-1805-28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Yang F, Xia SQ, Tan C, Zhang XM (2013) Preparation and evaluation of chitosan-calcium-gellan gum beads for controlled release of protein. Eur Food Res Technol 237(4):467–479. https://doi.org/10.1007/s00217-013-2021-y

    Article  CAS  Google Scholar 

  27. Yokoyama T, Tokuda M, Amano M, Mikami K (2017) Simultaneous determination of primary and secondary d- and l-amino acids by reversed-phase high-performance liquid chromatography using pre-column derivatization with two-step labelling method. Biosci Biotechnol Biochem 81(9):1681–1686. https://doi.org/10.1080/09168451.2017.1340090

    Article  PubMed  CAS  Google Scholar 

  28. Amorim Franco TM, Blanchard JS (2017) Bacterial branched-chain amino acid biosynthesis: structures, mechanisms, and drugability. Biochemistry 56(44):5849–5865. https://doi.org/10.1021/acs.biochem.7b00849

    Article  PubMed  CAS  Google Scholar 

  29. Wu H, Wang Y, Yuan L, Mao Y, Wang W, Zhu L, Wu P, Fu C, Muller R, Weaver DT, Zhang L, Zhang B (2016) Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea. Synth Syst Biotechnol 1(1):39–46. https://doi.org/10.1016/j.synbio.2016.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  30. Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ (2007) L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73(7):2079–2084. https://doi.org/10.1128/AEM.02826-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Jovetic S, Feroggio M, Marinelli F, Lancini G (2008) Factors influencing cell fatty acid composition and A40926 antibiotic complex production in Nonomuraea sp. ATCC 39727. J Ind Microbiol Biotechnol 35(10):1131–1138. https://doi.org/10.1007/s10295-008-0392-z

    Article  PubMed  CAS  Google Scholar 

  32. Mohd Jaafar MH, Abdul Hamid K (2019) Chitosan-coated alginate nanoparticles enhanced absorption profile of insulin via oral administration. Curr Drug Deliv. 16(7):672–686. https://doi.org/10.2174/1567201816666190620110748

    Article  PubMed  CAS  Google Scholar 

  33. Li K, Zhu J, Guan G, Wu H (2019) Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: film properties, characterization, and formation mechanism. Int J Biol Macromol 122:485–492. https://doi.org/10.1016/j.ijbiomac.2018.10.188

    Article  PubMed  CAS  Google Scholar 

  34. Komoto D, Furuike T, Tamura H (2019) Preparation of polyelectrolyte complex gel of sodium alginate with chitosan using basic solution of chitosan. Int J Biol Macromol 126:54–59. https://doi.org/10.1016/j.ijbiomac.2018.12.195

    Article  PubMed  CAS  Google Scholar 

  35. Criado-Gonzalez M, Fernandez-Gutierrez M, San Roman J, Mijangos C, Hernandez R (2019) Local and controlled release of tamoxifen from multi (layer-by-layer) alginate/chitosan complex systems. Carbohydr Polym 206:428–434. https://doi.org/10.1016/j.carbpol.2018.11.007

    Article  PubMed  CAS  Google Scholar 

  36. Sanchez S, Demain AL (2002) Metabolic regulation of fermentation processes. Enzyme Microb Technol 31(7):895–906. https://doi.org/10.1016/S0141-0229(02)00172-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2015CL001).

Author information

Authors and Affiliations

Authors

Contributions

YX, YBY, and DHJ designed and planed the experimental work of this study and drafted this manuscript. YX performed most of the experiments in this work. YBY contributed to preparation of the pH-responsive alginate–chitosan microspheres and partial microbial cultivation work. WS and GW assisted in interpreting the data and revised the manuscript. ZRY advised the project and was involved in revising the manuscript.

Corresponding author

Correspondence to Huijun Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Yan, B., Wang, S. et al. Preparation of pH-Responsive Alginate–Chitosan Microspheres for L-Valine Loading and Their Effects on the A40926 Production. Curr Microbiol 77, 1016–1023 (2020). https://doi.org/10.1007/s00284-020-01894-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01894-8