Abstract
The square \(G^2\) of a graph \(G\) is defined on the vertex set \(V(G)\) of \(G\) such that any two vertices with distance at most two in \(G\) are linked by an edge. In this paper, the chromatic number and equitable chromatic number of the square \(S^2(n,k)\) of Sierpiński graph \(S(n,k)\) are studied. It is obtained that \(\chi (S^2(n,k))=\chi _{=}(S^2(n,k))=k+1\) for \(n\ge 2\) and \(k\ge 2\).
Similar content being viewed by others
References
Arett, D., Dorée, S.: Coloring on the Tower of Hanoi graphs. Math. Mag. 83, 200–209 (2010)
Beaudou, L., Gravier, S., Klavžar, S., Kovše, M., Mollard, M.: Covering codes in Sierpiński graphs. Discrete Math. Theor. Comput. Sci 12, 63–74 (2010)
Bode, J.P., Hinz, A.M.: Results and open problems on the Tower of Hanoi. Congr. Numer. 139, 113–122 (1999)
Bondy, J.A., Murty, U.S.: Graph Theory with Applicatons. North-Holland, New York (1976)
Chan, T.H.: A statistical analysis of the Towers of Hanoi problem. Int. J. Comput. Math. 28, 57–65 (1989)
Chen, J.Y., Lih, K.W., Wu, J.J.: Coloring the square of the Kneser graph KG(2k+1, k) and the Schrijver graph SG(2k+2, k). Discrete Appl. Math. 157, 170–176 (2009)
Chiang, S.H., Yan, J.H.: On \(L(d,1)\)-labeling of Cartesian product a cycle and a path. Discrete Appl. Math. 156, 2867–2881 (2008)
Cull, P., Nelson, I.: Error-correcting codes on the Towers of Hanoi graphs. Discrete Math. 208–209, 157–175 (1999)
Dvořák, Z., Král, D., Nejedlý, P., Škrekovski, R.: Coloring squares of planar graphs with girth six. Eur. J. Combin. 29(4), 838–849 (2008)
Fu, H.Y., Xie, D.Z.: Equitable \(L(2,1)\)-labelings of Sierpiński graphs. Australas. J. Combin. 46, 147–156 (2010)
Fu, H.Y.: \(\{P_r\}\)-free colorings of Sierpiński-like graphs. Ars Combin. 105, 513–524 (2012)
Gravier, S., Klavžar, S., Mollard, M.: Codes and \(L(2,1)\)-labelings in Sierpiński-like graphs. Taiwan. J. Math. 9, 671–681 (2005)
Havet, F., Van den Heuvel, J., Mcdiarmid, C., Reed, B.: List coloring of squares of planar graphs. Electron. Notes Discrete Math. 29, 515–519 (2007)
Hinz, A.M.: Pascal’s triangle and the Tower of Hanoi. Am. Math. Mon. 99, 538–544 (1992)
Hinz, A.M., Klavžar, S., Milutinović, U., Parisse, D., Petr, C.: Metric properties of the Tower of Hanoi graphs and Stern’s diatomic sequence. Eur. J. Combin. 26, 693–708 (2005)
Hinz, A.M., Parisse, D.: Coloring Hanoi and Sierpiński graphs. Discrete Math. 312, 1521–1535 (2012)
Hinz, A.M., Parisse, D.: The average eccentricity of Sierpiński graphs. Graphs Combin. 28, 671–686 (2012)
Hinz, A.M.: The Tower of Hanoi. Enseign. Math. (2) 35, 289–321 (1989)
Hinz, A.M.: The Tower of Hanoi. In: Shum, K.P., Taft, E.J., Wan, Z.X. (eds.) Algebras and Combinatorics, pp. 277–289. Springer, Singapore (1999)
Hinz, A.M., Parisse, D.: On the planarity of Hanoi graphs. Expo. Math. 20, 263–268 (2002)
Hinz, A.M., Klavžar, S., Milutinović, U., Petr, C.: The Tower of Hanoi-Myths and Maths. Birkhäuser/Springer, Basel (2013)
Jakovac, M., Klavžar, S.: Vertex-, edge-, and total-coloring of Sierpiński-like graphs. Discrete Math. 309, 1548–1556 (2009)
Klavžar, S., Milutinović, U.: Graphs \(S(n, k)\) and a variant of the tower of Hanoi problem. Czechoslovak Math. J. 47(122), 95–104 (1997)
Klavžar, S., Mohar, B.: Crossing number of Sierpiński-like graphs. J. Graph Theory 50, 186–198 (2005)
Klavžar, S., Milutinović, U., Petr, C.: 1-perfect codes in Sierpiński-like graphs. Bull. Aust. Math. Soc. 66, 369–384 (2002)
Klavžar, S., Peterin, I., Zemljič, S.S.: Hamming dimension of a graph-The case of Sierpiński graphs. Eur. J. Combin. 34, 460–473 (2013)
Klavžar, S., Zemljič, S.S.: On distances in Sierpiński graphs: almost-extreme vertices and metric dimension. Appl. Anal. Discrete Math. 7, 72–82 (2013)
Lih, K.W., Wang, W.F.: Coloring the square of an outerplanar graph. Taiwan. J. Math. 10, 1015–1023 (2006)
Lin, C.H., Liu, J.J., Wang, Y.L., Yen, W.C.: The hub number of Sierpiński-like graphs. Theory Comput. Syst. 49, 588–600 (2011)
Lipscomb, S.L., Perry, J.C.: Lipscomb’s \(L(A)\) space fractalized in Hilbert’s \(l^2(A)\) space. Proc. Am. Math. Soc. 115, 1157–1165 (1992)
Meyer, W.: Equitable coloring. Am. Math. Mon. 80, 920–922 (1973)
Milutinović, U.: Completeness of the Lipscomb space. Glas. Mat. Ser. III 27(47), 343–364 (1992)
Molloy, M., Salavatipour, M.R.: A bound on the chromatic number of the square of a planar graph. J. Combin. Theory Ser. B 94(2), 189–213 (2005)
Parisse, D.: On some metric properties of the Sierpiński-like graphs \(S(n, k)\). Ars Combin. 90, 145–160 (2009)
Romik, D.: Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J. Discrete Math. 20, 610–622 (2006)
Sopena, É., Wu, J.J.: Coloring the square of Cartesian product of two cycles. Discrete. Math. 310, 2327–2333 (2010)
Tucker, A.C.: Perfect graphs and an application to opimizing municipal services. SIAM Rev, 15, 585–590 (1973)
Van den Heuvel, J., Guinness, S.: Coloring the square of a planar graph. J. Graph Theory 42, 110–124 (2002)
Wegner, G.: Graphs with given diameter and a coloring problem, Technical Report. Univ. Dortmund, Dortmund (1977)
Xue, B., Zuo, L., Li, G.J.: The hamiltonicity and path \(t\)-coloring of Sierpiński-like graphs. Discrete Appl. Math. 160, 1822–1836 (2012)
Xue, B., Zuo, L., Wang, G., Li, G.J.: The linear \(t\)-colorings of Sierpiński-like graphs. Graphs Combin. 30, 755–767 (2014)
Xue, B., Zuo, L., Wang, G., Li, G.J.: Shortest paths in Sierpiński-like graphs. Discrete Appl. Math. 162, 314–321 (2014)
Acknowledgments
The authors would like to thank referees for their helpful suggestions for the improvement of the manuscript. This work is supported by research grants NSFC with codes 61070095, 60873207, and NSFC for youth with code 61103073.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xue, B., Zuo, L. & Li, G. Coloring the Square of Sierpiński Graphs. Graphs and Combinatorics 31, 1795–1805 (2015). https://doi.org/10.1007/s00373-014-1444-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-014-1444-y