Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Coloring the Square of Sierpiński Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The square \(G^2\) of a graph \(G\) is defined on the vertex set \(V(G)\) of \(G\) such that any two vertices with distance at most two in \(G\) are linked by an edge. In this paper, the chromatic number and equitable chromatic number of the square \(S^2(n,k)\) of Sierpiński graph \(S(n,k)\) are studied. It is obtained that \(\chi (S^2(n,k))=\chi _{=}(S^2(n,k))=k+1\) for \(n\ge 2\) and \(k\ge 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arett, D., Dorée, S.: Coloring on the Tower of Hanoi graphs. Math. Mag. 83, 200–209 (2010)

  2. Beaudou, L., Gravier, S., Klavžar, S., Kovše, M., Mollard, M.: Covering codes in Sierpiński graphs. Discrete Math. Theor. Comput. Sci 12, 63–74 (2010)

    Google Scholar 

  3. Bode, J.P., Hinz, A.M.: Results and open problems on the Tower of Hanoi. Congr. Numer. 139, 113–122 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Bondy, J.A., Murty, U.S.: Graph Theory with Applicatons. North-Holland, New York (1976)

    Google Scholar 

  5. Chan, T.H.: A statistical analysis of the Towers of Hanoi problem. Int. J. Comput. Math. 28, 57–65 (1989)

    Article  MATH  Google Scholar 

  6. Chen, J.Y., Lih, K.W., Wu, J.J.: Coloring the square of the Kneser graph KG(2k+1, k) and the Schrijver graph SG(2k+2, k). Discrete Appl. Math. 157, 170–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiang, S.H., Yan, J.H.: On \(L(d,1)\)-labeling of Cartesian product a cycle and a path. Discrete Appl. Math. 156, 2867–2881 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cull, P., Nelson, I.: Error-correcting codes on the Towers of Hanoi graphs. Discrete Math. 208–209, 157–175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dvořák, Z., Král, D., Nejedlý, P., Škrekovski, R.: Coloring squares of planar graphs with girth six. Eur. J. Combin. 29(4), 838–849 (2008)

    Article  MATH  Google Scholar 

  10. Fu, H.Y., Xie, D.Z.: Equitable \(L(2,1)\)-labelings of Sierpiński graphs. Australas. J. Combin. 46, 147–156 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Fu, H.Y.: \(\{P_r\}\)-free colorings of Sierpiński-like graphs. Ars Combin. 105, 513–524 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Gravier, S., Klavžar, S., Mollard, M.: Codes and \(L(2,1)\)-labelings in Sierpiński-like graphs. Taiwan. J. Math. 9, 671–681 (2005)

    MATH  Google Scholar 

  13. Havet, F., Van den Heuvel, J., Mcdiarmid, C., Reed, B.: List coloring of squares of planar graphs. Electron. Notes Discrete Math. 29, 515–519 (2007)

    Article  Google Scholar 

  14. Hinz, A.M.: Pascal’s triangle and the Tower of Hanoi. Am. Math. Mon. 99, 538–544 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hinz, A.M., Klavžar, S., Milutinović, U., Parisse, D., Petr, C.: Metric properties of the Tower of Hanoi graphs and Stern’s diatomic sequence. Eur. J. Combin. 26, 693–708 (2005)

    Article  MATH  Google Scholar 

  16. Hinz, A.M., Parisse, D.: Coloring Hanoi and Sierpiński graphs. Discrete Math. 312, 1521–1535 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hinz, A.M., Parisse, D.: The average eccentricity of Sierpiński graphs. Graphs Combin. 28, 671–686 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hinz, A.M.: The Tower of Hanoi. Enseign. Math. (2) 35, 289–321 (1989)

  19. Hinz, A.M.: The Tower of Hanoi. In: Shum, K.P., Taft, E.J., Wan, Z.X. (eds.) Algebras and Combinatorics, pp. 277–289. Springer, Singapore (1999)

    Google Scholar 

  20. Hinz, A.M., Parisse, D.: On the planarity of Hanoi graphs. Expo. Math. 20, 263–268 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hinz, A.M., Klavžar, S., Milutinović, U., Petr, C.: The Tower of Hanoi-Myths and Maths. Birkhäuser/Springer, Basel (2013)

    Book  MATH  Google Scholar 

  22. Jakovac, M., Klavžar, S.: Vertex-, edge-, and total-coloring of Sierpiński-like graphs. Discrete Math. 309, 1548–1556 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klavžar, S., Milutinović, U.: Graphs \(S(n, k)\) and a variant of the tower of Hanoi problem. Czechoslovak Math. J. 47(122), 95–104 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klavžar, S., Mohar, B.: Crossing number of Sierpiński-like graphs. J. Graph Theory 50, 186–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Klavžar, S., Milutinović, U., Petr, C.: 1-perfect codes in Sierpiński-like graphs. Bull. Aust. Math. Soc. 66, 369–384 (2002)

    Article  MATH  Google Scholar 

  26. Klavžar, S., Peterin, I., Zemljič, S.S.: Hamming dimension of a graph-The case of Sierpiński graphs. Eur. J. Combin. 34, 460–473 (2013)

    Article  MATH  Google Scholar 

  27. Klavžar, S., Zemljič, S.S.: On distances in Sierpiński graphs: almost-extreme vertices and metric dimension. Appl. Anal. Discrete Math. 7, 72–82 (2013)

    Article  MathSciNet  Google Scholar 

  28. Lih, K.W., Wang, W.F.: Coloring the square of an outerplanar graph. Taiwan. J. Math. 10, 1015–1023 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Lin, C.H., Liu, J.J., Wang, Y.L., Yen, W.C.: The hub number of Sierpiński-like graphs. Theory Comput. Syst. 49, 588–600 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lipscomb, S.L., Perry, J.C.: Lipscomb’s \(L(A)\) space fractalized in Hilbert’s \(l^2(A)\) space. Proc. Am. Math. Soc. 115, 1157–1165 (1992)

    MathSciNet  MATH  Google Scholar 

  31. Meyer, W.: Equitable coloring. Am. Math. Mon. 80, 920–922 (1973)

    Article  MATH  Google Scholar 

  32. Milutinović, U.: Completeness of the Lipscomb space. Glas. Mat. Ser. III 27(47), 343–364 (1992)

    MathSciNet  MATH  Google Scholar 

  33. Molloy, M., Salavatipour, M.R.: A bound on the chromatic number of the square of a planar graph. J. Combin. Theory Ser. B 94(2), 189–213 (2005)

  34. Parisse, D.: On some metric properties of the Sierpiński-like graphs \(S(n, k)\). Ars Combin. 90, 145–160 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Romik, D.: Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J. Discrete Math. 20, 610–622 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sopena, É., Wu, J.J.: Coloring the square of Cartesian product of two cycles. Discrete. Math. 310, 2327–2333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tucker, A.C.: Perfect graphs and an application to opimizing municipal services. SIAM Rev, 15, 585–590 (1973)

  38. Van den Heuvel, J., Guinness, S.: Coloring the square of a planar graph. J. Graph Theory 42, 110–124 (2002)

    Article  Google Scholar 

  39. Wegner, G.: Graphs with given diameter and a coloring problem, Technical Report. Univ. Dortmund, Dortmund (1977)

    Google Scholar 

  40. Xue, B., Zuo, L., Li, G.J.: The hamiltonicity and path \(t\)-coloring of Sierpiński-like graphs. Discrete Appl. Math. 160, 1822–1836 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xue, B., Zuo, L., Wang, G., Li, G.J.: The linear \(t\)-colorings of Sierpiński-like graphs. Graphs Combin. 30, 755–767 (2014)

  42. Xue, B., Zuo, L., Wang, G., Li, G.J.: Shortest paths in Sierpiński-like graphs. Discrete Appl. Math. 162, 314–321 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank referees for their helpful suggestions for the improvement of the manuscript. This work is supported by research grants NSFC with codes 61070095, 60873207, and NSFC for youth with code 61103073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liancui Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, B., Zuo, L. & Li, G. Coloring the Square of Sierpiński Graphs. Graphs and Combinatorics 31, 1795–1805 (2015). https://doi.org/10.1007/s00373-014-1444-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-014-1444-y

Keywords