Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Polynomial Turing-Kernel for Weighted Independent Set in Bull-Free Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The maximum stable set problem is NP-hard, even when restricted to triangle-free graphs. In particular, one cannot expect a polynomial time algorithm deciding if a bull-free graph has a stable set of size k, when k is part of the instance. Our main result in this paper is to show the existence of an FPT algorithm when we parameterize the problem by the solution size k. A polynomial kernel is unlikely to exist for this problem. We show however that our problem has a polynomial size Turing-kernel. More precisely, the hard cases are instances of size \({O}(k^5)\). As a byproduct, if we forbid odd holes in addition to the bull, we show the existence of a polynomial time algorithm for the stable set problem. We also prove that the chromatic number of a bull-free graph is bounded by a function of its clique number and the maximum chromatic number of its triangle-free induced subgraphs. All our results rely on a decomposition theorem for bull-free graphs due to Chudnovsky which is modified here, allowing us to provide extreme decompositions, adapted to our computational purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, London (2008)

    Book  MATH  Google Scholar 

  2. Bodlaender, H., Downey, R., Fellows, M., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandstädt, A., Mosca, R.: Maximum weight independent sets in odd-hole-free graphs without dart or without bull. CoRR, abs/1209.2512 (2012)

  4. Chudnovsky, M.: The structure of bull-free graphs I: three-edge-paths with center and anticenters. J. Comb. Theory B 102(1), 233–251 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chudnovsky, M.: The structure of bull-free graphs II and III: a summary. J. Comb. Theory B 102(1), 252–282 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chudnovsky, M.: The structure of bull-free graphs II: elementary trigraphs. https://web.math.princeton.edu/~mchudnov/bulls2.pdf

  7. Chudnovsky, M.: The structure of bull-free graphs III: global structure. https://web.math.princeton.edu/~mchudnov/bulls3.pdf

  8. Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P., Vušković, K.: Recognizing berge graphs. Combinatorica 25(2), 143–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164(1), 51–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dabrowski, K., Lozin, V., Müller, H., Rautenbach, D.: Parameterized complexity of the weighted independent set problem beyond graphs of bounded clique number. J. Discrete Algorithms 14, 207–213 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Parameterized Complexity, Monographs in Computer Science. Springer, New York (1999)

    Book  Google Scholar 

  12. Faenza, Y., Oriolo, G., Stauffer, G.: An algorithmic decomposition of claw-free graphs leading to an \(O(n^{3}\))-algorithm for the weighted stable set problem. In: SODA, pp. 630–646 (2011)

  13. Farrugia, A.: Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard. Electron. J. Combin. 11(1), R46 (2004)

  14. Fernau, H., Fomin, F., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.: Kernels for Problems with No Kernel: On Out-Trees with Many Leaves. STACS, Freiburg (2009)

  15. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  16. Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastowania Mat. Appl. Math. 19, 413–441 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Habib, M., Mamcarz, A., de Montgolfier, F.: Algorithms for some \(H\)-join decompositions. In: Fernández-Baca [17], pp. 446–457

  18. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)

    Article  MATH  Google Scholar 

  19. Hermelin, D., Kratsch, S., Soltys, K., Wahlström, M., Wu, X.: A Completeness Theory for Polynomial (Turing) Kernelization. IPEC (2013)

  20. Jansen, B.M.P.: Turing kernelization for finding long paths and cycles in restricted graph classes. CoRR, abs/1402.4718 (2014)

  21. Lokshtanov, D.: New Methods in Parameterized Algorithms and Complexity. PhD thesis, University of Bergen (2009)

  22. Lokshtantov, D., Vatshelle, M., Villanger, Y.: Independent set in \(p_5\)-free graphs in polynomial time. SODA 2014, 570–581 (2013)

  23. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Hagerup and Katajainen [23], pp. 260–272

  24. Poljak, S.: A note on the stable sets and coloring of graphs. Comment. Math. Univ. Carol. 15, 307–309 (1974)

    MathSciNet  MATH  Google Scholar 

  25. Rödl, V.: On the chromatic number of subgraphs of a given graph. Proc. Am. Math. Soc. 64, 370–371 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Perret du Cray, H., Sau, I.: Improved FPT algorithms for weighted independent set in bull-free graphs. arXiv:1407.1706

  27. Sauer, N.: On the density of families of sets. J. Comb. Theory Ser. A 13(1), 145–147 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thomassé, S., Trotignon, N., Vušković, K.: A polynomial Turing-kernel for weighted independent set in bull-free graphs. In: Kratsch and Todinca [26], pp. 408–419

  29. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Thanks to Andreas Brandstädt, Maria Chudnovsky, Louis Esperet, Ignasi Sau and Dieter Kratsch for several suggestions. Thanks to Haiko Müller for pointing out to us [13]. Thanks to Sébastien Tavenas and the participants to GROW 2013 for useful discussions on Turing-kernels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Trotignon.

Additional information

S. Thomassé and N. Trotignon are partially supported by ANR project Stint under reference ANR-13-BS02-0007 and by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program Investissements d’Avenir (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). K. Vušković is partially supported by EPSRC Grant EP/K016423/1 and Serbian Ministry of Education and Science projects 174033 and III44006.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomassé, S., Trotignon, N. & Vušković, K. A Polynomial Turing-Kernel for Weighted Independent Set in Bull-Free Graphs. Algorithmica 77, 619–641 (2017). https://doi.org/10.1007/s00453-015-0083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-015-0083-x

Keywords