Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hunting for Reduced Polytopes

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We show that there exist reduced polytopes in three-dimensional Euclidean space. This partially answers the question posed by Lassak (Israel J Math 70(3):365–379, 1990) on the existence of reduced polytopes in d-dimensional Euclidean space for \(d\ge 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Averkov, G., Martini, H.: On pyramids and reducedness. Period. Math. Hung. 57(2), 117–120 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Averkov, G., Martini, H.: On reduced polytopes and antipodality. Adv. Geom. 8(4), 615–626 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chakerian, G.D., Groemer, H.: Convex bodies of constant width. In: Gruber, P.M., Wills, J.M. (eds.) Convexity and Its Applications, pp. 49–96. Birkhäuser, Basel (1983)

    Chapter  Google Scholar 

  4. González Merino, B., Jahn, T., Wachsmuth, G.: Hunting for reduced polytopes: evaluating your catches. (2016). https://doi.org/10.5281/zenodo.58491

  5. Gritzmann, P., Klee, V.: Inner and outer \(j\)-radii of convex bodies in finite-dimensional normed spaces. Discrete Comput. Geom. 7(1), 255–280 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Heil, E.: Kleinste konvexe Körper gegebener Dicke. Preprint No. 453. Technische Hochschule, Darmstadt (1978)

    Google Scholar 

  7. Johnson, N.W.: Convex polyhedra with regular faces. Can. J. Math. 18(1), 169–200 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 2nd edn. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

  9. Lassak, M.: Reduced convex bodies in the plane. Israel J. Math. 70(3), 365–379 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lassak, M.: On the smallest disk containing a planar reduced convex body. Arch. Math. (Basel) 80(5), 553–560 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lassak, M.: Characterizations of reduced polytopes in finite-dimensional normed spaces. Beitr. Algebra Geom. 47(2), 559–566 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Lassak, M.: Approximation of bodies of constant width and reduced bodies in a normed plane. J. Convex Anal. 19(3), 865–874 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Lassak, M., Martini, H.: Reduced bodies in Minkowski space. Acta Math. Hung. 106(1–2), 17–26 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lassak, M., Martini, H.: Reduced convex bodies in Euclidean space—a survey. Expo. Math. 29(2), 204–219 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lassak, M., Martini, H.: Reduced convex bodies in finite dimensional normed spaces: a survey. Result. Math. 66(3–4), 405–426 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Martini, H., Swanepoel, K.J.: Non-planar simplices are not reduced. Publ. Math. Debrecen 64(1–2), 101–106 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Martini, H., Wenzel, W.: Tetrahedra are not reduced. Appl. Math. Lett. 15(7), 881–884 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meissner, E.: Über Punktmengen konstanter Breite. Zürich. Naturf.-Ges. 56, 42–50 (1911)

    MATH  Google Scholar 

  19. Pál, J.: Ein Minimalproblem für Ovale. Math. Ann. 83, 311–319 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zalgaller, V.A.: Convex Polyhedra with Regular Faces. Seminars in Mathematics, V.A. Steklov Mathematical Institute, vol. 2. Consultants Bureau, New York (1969)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Horst Martini for encouraging us in the search of reduced polytopes, and René Brandenberg and Undine Leopold for fruitful discussions. We also thank Alexandr Golovanov for bringing the idea to consider spherical images of polytopes to our attention. This idea helped us to construct an example of a reduced polytope. Finally, we would like to thank the anonymous referees for helping us in improving the paper. The work was partially done when the first author was a postdoctoral fellow at the Technische Universität München and at the University Centre of Defence at the Air-Force Academy San Javier, Spain, and the third author was a postdoctoral fellow at the Technion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Jahn.

Additional information

Editor in Charge: János Pach

The first author is partially supported by La Fundación Séneca Projects 19769/PD/15 and ‘Programa de Ayudas a Grupos de Excelencia de la Región de Murcia’, 19901/GERM/15, and by MINECO MTM2015-63699-P, Spain. The third author is partially supported by the Russian Foundation for Basic Research, Grants Nos. 15-31-20403 (mol_a_ved), 15-01-99563 A, 15-01-03530 A, Russia, and by the ISF Grant No. 409/16, Israel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merino, B.G., Jahn, T., Polyanskii, A. et al. Hunting for Reduced Polytopes. Discrete Comput Geom 60, 801–808 (2018). https://doi.org/10.1007/s00454-018-9982-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-9982-3

Keywords

Mathematics Subject Classification