Abstract
Trajectory abstraction is used to summarize the large amount of information delivered by the trajectory data, and trajectory restoration is used to reconstruct lost parts of trajectories. To cope with complex trajectory data, in this paper, we propose a new strategy for abstracting and restoring trajectories from the perspective of signal processing. That is, trajectories are treated as signals that bear copious information that varies with time and space, and information filtering is exploited to concisely communicate the trajectory data. As for trajectory abstraction, the resampling of trajectory data is first introduced based on achieving the minimum Jensen–Shannon divergence of the trajectories before and after being resampled. Then, a non-local filtering approach is developed to perform wavelet transformations of similarity groups of these resampled trajectories to produce the trajectory summaries. Trajectory abstraction can not only offer multi-granularity summaries of trajectory data, but also identify outliers by utilizing a probabilistic definition of a group of trajectories and the Shannon entropy. Furthermore, to handle incomplete trajectory data for which some sample points are lost, the proposed non-local filtering idea is exploited to restore the incomplete data. Extensive experimental studies have shown that the proposed trajectory abstraction and restoration can obtain very encouraging results, in terms of both objective evaluation metrics and subjective visual effects. To the best of our knowledge, this is the first attempt to deploy the group-based signal filtering technique in the context of dealing with trajectory data. In addition, as a preprocessing step, the proposed trajectory abstraction can be employed to improve the performance of trajectory clustering.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aggarwal CC (2017) Outlier analysis. Springer, Berlin. doi:10.1007/978-3-319-47578-3
Aggarwal CC, Reddy CK (2013) Data clustering: algorithms and applications. Chapman and Hall/CRC, London
Aircraft dataset. https://c3.nasa.gov/dashlink/resources/132/. Accessed 22 June 2017
Allasia G, Besenghi R, Cavoretto R, Rossi AD (2011) Scattered and track data interpolation using an efficient strip searching procedure. Appl Math Comput 217(12):5949–5966. doi:10.1016/j.amc.2010.12.110
Alt H (2009) The computational geometry of comparing shapes. In: Albers S, Alt H, Näher S (eds) Efficient algorithms: essays dedicated to Kurt Mehlhorn on the occasion of his 60th birthday. Springer, Berlin, pp 235–248. doi:10.1007/978-3-642-03456-5_16
Anjum N, Cavallaro A (2008) Multifeature object trajectory clustering for video analysis. IEEE Trans Circuits Syst Video Technol 18(11):1555–1564. doi:10.1109/TCSVT.2008.2005603
Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) Optics: ordering points to identify the clustering structure. In: Proceedings of the 1999 ACM SIGMOD international conference on management of data, SIGMOD ’99, pp 49–60. ACM, New York. DOI:10.1145/304181.304187
Best track dataset. http://weather.unisys.com/hurricane/atlantic/. Accessed 22 June 2017
Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: IEEE computer society conference on computer vision and pattern recognition, CVPR ’05, vol 2, pp 60–65. IEEE Computer Society, Washington, DC, USA. DOI:10.1109/CVPR.2005.38
Calderara S, Prati A, Cucchiara R (2011) Mixtures of von mises distributions for people trajectory shape analysis. IEEE Trans Circuits Syst Video Technol 21(4):457–471. doi:10.1109/TCSVT.2011.2125550
Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):15:1–15:58. doi:10.1145/1541880.1541882
Chen C, Zhang D, Castro PS, Li N, Sun L, Li S (2012) Real-time detection of anomalous taxi trajectories from GPS traces. In: Puiatti A, Gu I (eds) Mobile and ubiquitous systems: computing, networking, and services. MobiQuitous 2011, vol 104. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering. Springer, Berlin, pp 63–74. doi:10.1007/978-3-642-30973-1_6
Chen W, Chang SF (2000) Motion trajectory matching of video objects. In: Storage and retrieval for media databases, vol 3972, pp 544–553. The International Society for Optical Engineering. DOI:10.1117/12.373587
Clifton DA, Clifton L, Hugueny S, Wong D, Tarassenko L (2013) An extreme function theory for novelty detection. IEEE J Select Top Signal Process 7(1):28–37. doi:10.1109/JSTSP.2012.2234081
Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095. doi:10.1109/TIP.2007.901238
Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series data: experimental comparison of representations and distance measures. Proce VLDB Endow 1(2):1542–1552. doi:10.14778/1454159.1454226
Edinburgh dataset. http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/. Accessed 22 June 2017
Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining, KDD’96, pp 226–231. AAAI Press
Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases. SIGMOD Rec 23(2):419–429. doi:10.1145/191843.191925
Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395. doi:10.1145/358669.358692
Gariel M, Srivastava AN, Feron E (2011) Trajectory clustering and an application to airspace monitoring. IEEE Trans Intell Transp Syst 12(4):1511–1524. doi:10.1109/TITS.2011.2160628
Guo Y, Xu Q, Liang S, Fan Y, Sbert M (2015) Xaibo: an extension of AIB for trajectory clustering with outlier. In: Arik S, Huang T, Lai WK, Liu Q (eds) Neural information processing, vol 9490. Lecture notes in computer science. Springer, Berlin, pp 423–431. doi:10.1007/978-3-319-26535-3_48
Guo Y, Xu Q, Yang Y, Liang S, Liu Y, Sbert M (2014) Anomaly detection based on trajectory analysis using kernel density estimation and information bottleneck techniques. Technical report 108, University of Girona. http://gilab.udg.edu/wp-content/uploads/publications/IIiA-15-01-RR.pdf
Hazan A, Lacaille J, Madani K (2012) Extreme value statistics for vibration spectra outlier detection. In: International conference on condition monitoring and machinery failure prevention technologies, p 1. Londres, UK
Johnstone IM, Silverman BW (1997) Wavelet threshold estimators for data with correlated noise. J R Stat Soc Ser B (Methodol) 59(2):319–351. doi:10.1111/1467-9868.00071
Jr, R.A., Forster CHQ (2012) Analysis of aircraft trajectories using fourier descriptors and kernel density estimation. In: 15th international IEEE conference on intelligent transportation systems, pp 1441–1446. IEEE, Anchorage, Alsaka, USA. DOI:10.1109/ITSC.2012.6338863
Kragten J (1990) Least-squares polynomial curve-fitting for calibration purposes (statcal-calibra). Anal Chim Acta 241(1):1–13. doi:10.1016/S0003-2670(00)83259-6
Laxhammar R, Falkman G (2014) Online learning and sequential anomaly detection in trajectories. IEEE Trans Pattern Anal Mach Intell 36(6):1158–1173. doi:10.1109/TPAMI.2013.172
Lin J (1991) Divergence measures based on the Shannon entropy. IEEE Trans Inf Theory 37(1):145–151. doi:10.1109/18.61115
Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137. doi:10.1109/TIT.1982.1056489
Luo X, Xu Q, Guo Y, Wei H, Lv Y (2015) Trajectory abstracting with group-based signal denoising. In: Arik S, Huang T, Lai WK, Liu Q (eds) Neural information processing, vol 9491. Lecture notes in computer science. Springer, Berlin, pp 452–461. doi:10.1007/978-3-319-26555-1_51
May R, Hanrahan P, Keim DA, Shneiderman B, Card S (2010) The state of visual analytics: views on what visual analytics is and where it is going. In: IEEE symposium on visual analytics science and technology, pp 257–259. IEEE. DOI:10.1109/VAST.2010.5649078
Morris BT, Trivedi MM (2008) A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans Circuits Syst Video Technol 18(8):1114–1127. doi:10.1109/TCSVT.2008.927109
Morris BT, Trivedi MM (2011) Trajectory learning for activity understanding: unsupervised, multilevel, and long-term adaptive approach. IEEE Trans Pattern Anal Mach Intell 33(11):2287–2301. doi:10.1109/TPAMI.2011.64
Morris BT, Trivedi MM (2013) Understanding vehicular traffic behavior from video: a survey of unsupervised approaches. J Electron Imaging 22(4):041,113–041,113. doi:10.1117/1.JEI.22.4.041113
Ntalampiras S, Potamitis I, Fakotakis N (2011) Probabilistic novelty detection for acoustic surveillance under real-world conditions. IEEE Trans Multimed 13(4):713–719. doi:10.1109/TMM.2011.2122247
Omni dataset. http://cvrr.ucsd.edu/bmorris/datasets/dataset_trajectory_analysis.html. Accessed 22 June 2017
Piciarelli C, Micheloni C, Foresti GL (2008) Trajectory-based anomalous event detection. IEEE Trans Circuits Syst Video Technol 18(11):1544–1554. doi:10.1109/TCSVT.2008.2005599
Pimentel MA, Clifton DA, Clifton L, Tarassenko L (2014) A review of novelty detection. Signal Process 99:215–249. doi:10.1016/j.sigpro.2013.12.026
Recorded video dataset. http://www-users.cs.umn.edu/~aleks/inclof/. Accessed 22 June 2017
Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496. doi:10.1126/science.1242072
Sahouria E, Zakhor A (1997) Motion indexing of video. In: International conference on image processing, vol 2, pp 526–529. IEEE, Santa Barbara, CA, USA. DOI:10.1109/ICIP.1997.638824
Süli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, Cambridge
Synthetic dataset. http://avires.dimi.uniud.it/papers/trclust/. Accessed 22 June 2017
Vlachos M, Lin J, Keogh E, Gunopulos D (2003) A wavelet-based anytime algorithm for k-means clustering of time series. In: Proceedings of workshop on clustering high dimensionality data and its applications, Citeseer, pp 23–30
Wang W, Yang J, Muntz R (1997) Sting: A statistical information grid approach to spatial data mining. In: Proceedings of the 23rd international conference on very large data bases, VLDB ’97, vol 97. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 186–195
Zhang T, Ramakrishnan R, Livny M (1996) Birch: An efficient data clustering method for very large databases. In: ACM SIGMOD international conference on management of data, SIGMOD ’96, pp 103–114. ACM, New York, NY, USA. DOI:10.1145/235968.233324
Zheng Y (2015) Trajectory data mining: an overview. ACM Trans Intell Syst Technol 6(3):29:1–29:41. doi:10.1145/2743025
Acknowledgements
Yuejun Guo and Xiaoxiao Luo contributed equally to this work and share the first authorship.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
This work has been funded by the Natural Science Foundation of China (61471261, 61179067, U1333110), and by the Grants TIN2013-47276-C6-1-R from the Spanish government and 2014-SGR-1232 from the Catalan government (Spain). The first author acknowledges the support from Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya and the European Social Fund.
Rights and permissions
About this article
Cite this article
Guo, Y., Xu, Q., Luo, X. et al. A group-based signal filtering approach for trajectory abstraction and restoration. Neural Comput & Applic 29, 371–387 (2018). https://doi.org/10.1007/s00521-017-3148-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-017-3148-8