Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards the Achievement of Path Planning with Multi-robot Systems in Dynamic Environments

  • Survey Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Recent advances in technology lead to the use of robotic systems as part of the modern working environment. Single and multiple robotic systems work closely with humans to accomplish desired tasks, and the recent advancements have made the usage of multi-robot teams more appealing. One critical problem in utilizing the robot’s full potential is the Path planning problem and, while in the case of a single’s robot, path planning has been extensively investigated, in the case of Multiple Robotic Systems (MRS), especially in dynamic changing environments, there are significant open challenges. Based on the statement mentioned above, a detailed survey has been conducted to highlight these challenges and identify potential solutions. In addition, the beneficial use of MRS is presented, as opposed to single robotic systems through the literature, and already-achievable industry-related results are provided. It is concluded that the practical application of path planning in dynamic environments using MRS is still a field of research and development, requiring the community to engage more with practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availibility

The data presented in this study are available on request from the corresponding author.

References

  1. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  2. Amanatiadis, A.A., Chatzichristofis, S.A., Charalampous, K., Doitsidis, L., Kosmatopoulos, E.B., Tsalides, P., Gasteratos, A., Roumeliotis, S.I.: A multi-objective exploration strategy for mobile robots under operational constraints. IEEE Access 1, 691–702 (2013)

    Article  Google Scholar 

  3. Erickson, L.H., LaValle, S.M.: A simple, but np-hard, motion planning problem. In: Twenty-Seventh AAAI Conference on Artificial Intelligence (2013)

  4. Parker, L.E.: Path planning and motion coordination in multiple mobile robot teams. Encyclopedia of Complexity and System Science, pp. 5783–5800 (2009)

  5. Mohanan, M.G., Salgoankar, A.: A survey of robotic motion planning in dynamic environments. Robotics and Autonomous Systems 100, 171–185 (2018)

    Article  Google Scholar 

  6. Zafar, M.N., Mohanta, J.C.: Methodology for path planning and optimization of mobile robots: A review. Procedia Computer Science 133, 141–152 (2018)

    Article  Google Scholar 

  7. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control 51(3), 401–420 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tournassoud, P.: A strategy for obstacle avoidance and its application to mullti-robot systems. In: Proceedings. 1986 IEEE International Conference on Robotics and Automation, vol. 3, pp 1224–1229. IEEE (1986)

  9. Siméon, T., Leroy, S., Lauumond, J.-P.: Path coordination for multiple mobile robots: A resolution-complete algorithm. IEEE Transactions on Robotics and Automation 18(1), 42–49 (2002)

    Article  Google Scholar 

  10. Van Den Berg, J., Ferguson, D., Kuffner, J.: Anytime path planning and replanning in dynamic environments. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 2366–2371. IEEE (2006)

  11. Leven, P., Hutchinson, S.: A framework for real-time path planning in changing environments. The International Journal of Robotics Research 21(12), 999–1030 (2002)

    Article  Google Scholar 

  12. Bennewitz, M., Burgard, W., Thrun, S.: Optimizing schedules for prioritized path planning of multi-robot systems. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), vol. 1, pp. 271–276. IEEE (2001)

  13. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation 20(2), 243–255 (2004)

    Article  Google Scholar 

  14. Parker, L.E.: Distributed intelligence: Overview of the field and its application in multi-robot systems. In: AAAI Fall Symposium: Regarding the Intelligence in Distributed Intelligent Systems, pp. 1–6 (2007)

  15. Zavlanos, M.M., Pappas, G.J.: Dynamic assignment in distributed motion planning with local coordination. IEEE Transactions on Robotics 24(1), 232–242 (2008)

    Article  Google Scholar 

  16. Kloder, S., Hutchinson, S.: Path planning for permutation-invariant multirobot formations. IEEE Transactions on Robotics 22(4), 650–665 (2006)

    Article  Google Scholar 

  17. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and Automation, pp. 1928–1935. IEEE (2008)

  18. Sophokleous, A., Christodoulou, P., Doitsidis, L., Chatzichristofis, S.A.: Computer vision meets educational robotics. Electronics 10(6), 730 (2021)

    Article  Google Scholar 

  19. Véras, L.G.D., Medeiros, F.L.L., Guimaráes, L.N.F.: Systematic literature review of sampling process in rapidly-exploring random trees. IEEE Access 7, 50933–50953 (2019)

    Article  Google Scholar 

  20. Perianes-Rodriguez, A., Waltman, L., Van Eck, N.J.: Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics 10(4), 1178–1195 (2016)

    Article  Google Scholar 

  21. Rizk, Y., Awad, M., Tunstel, E.W.: Cooperative heterogeneous multi-robot systems: A survey. ACM Computing Surveys (CSUR) 52(2), 1–31 (2019)

    Article  Google Scholar 

  22. Dorigo, M., Theraulaz, G., Trianni, V.: Swarm robotics: Past, present, and future. Proceedings of the IEEE 109(7), 1152–1165 (2021)

    Article  Google Scholar 

  23. Yoon, S., Kim, J.: Fleet size optimization and collaborative route planning for multi-vehicle task allocation. In: AIAA Scitech 2019 Forum, pp. 1572 (2019)

  24. Király, A., Christidou, M., Chován, T., Karlopoulos, E., Abonyi, J.: Minimization of off-grade production in multi-site multi-product plants by solving multiple traveling salesman problem. Journal of Cleaner Production 111, 253–261 (2016)

    Article  Google Scholar 

  25. Kapoutsis, A.C., Chatzichristofis, S.A., Kosmatopoulos, E.B.: Darp: divide areas algorithm for optimal multi-robot coverage path planning. Journal of Intelligent & Robotic Systems 86(3–4), 663–680 (2017)

    Article  Google Scholar 

  26. Khan, A., Noreen, I., Habib, Z.: On complete coverage path planning algorithms for non-holonomic mobile robots: Survey and challenges. J. Inf. Sci. Eng. 33(1) (2017)

  27. Lakshmanan, A.K., Mohan, R.E., Ramalingam, B., Le, A.V., Veerajagadeshwar, P., Tiwari, K., Ilyas, M.: Complete coverage path planning using reinforcement learning for tetromino based cleaning and maintenance robot. Automation in Construction 112, 103078 (2020)

    Article  Google Scholar 

  28. Liu, H., Ma, J., Huang, W.: Sensor-based complete coverage path planning in dynamic environment for cleaning robot. CAAI Transactions on Intelligence Technology 3(1), 65–72 (2018)

    Article  Google Scholar 

  29. Yehoshua, R., Agmon, N., Kaminka, G.A.: Robotic adversarial coverage of known environments. The International Journal of Robotics Research 35(12), 1419–1444 (2016)

    Article  Google Scholar 

  30. Wu, J., Wang, H., Li, N., Yao, P., Huang, Y., Yang, H.: Path planning for solar-powered uav in urban environment. Neurocomputing 275, 2055–2065 (2018)

    Article  Google Scholar 

  31. Alonso-Mora, J., Baker, S., Rus, D.: Multi-robot formation control and object transport in dynamic environments via constrained optimization. The International Journal of Robotics Research 36(9), 1000–1021 (2017)

    Article  Google Scholar 

  32. Čáp, M., Vokřínek, J., Kleiner, A.: Complete decentralized method for on-line multi-robot trajectory planning in well-formed infrastructures. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 25 (2015)

  33. Ji, W., Li, J.L., Zhao, D.A., Jun, Y.: Obstacle avoidance path planning for harvesting robot manipulator based on maklink graph and improved ant colony algorithm. In: Applied Mechanics and Materials, vol. 530, pp. 1063–1067. Trans Tech Publ (2014)

  34. Alonso-Mora, J., Beardsley, P., Siegwart, R.: Cooperative collision avoidance for nonholonomic robots. IEEE Transactions on Robotics 34(2), 404–420 (2018)

    Article  Google Scholar 

  35. Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M.W., Willmann, J.S., Gramazio, F., Kohler, M., D’Andrea, R.: The flight assembled architecture installation: Cooperative construction with flying machines. IEEE Control Systems Magazine 34(4), 46–64 (2014)

    Article  MathSciNet  Google Scholar 

  36. Puig, D., García, M.A., Wu, L.: A new global optimization strategy for coordinated multi-robot exploration: Development and comparative evaluation. Robotics and Autonomous Systems 59(9), 635–653 (2011)

    Article  Google Scholar 

  37. Renzaglia, A., Doitsidis, L., Martinelli, A., Kosmatopoulos, E.B.: Multi-robot three-dimensional coverage of unknown areas. The International Journal of Robotics Research 31(6), 738–752 (2012)

    Article  Google Scholar 

  38. Scaramuzza, D., Achtelik, M., Doitsidis, L., Friedrich, F., Kosmatopoulos, E., Martinelli, A., Achtelik, M., Chli, M., Chatzichristofis, S., Kneip, L., Gurdan, D., Heng, L., Lee, G., Lynen, S., Pollefeys, M., Renzaglia, A., Siegwart, R., Stumpf, J., Tanskanen, P., Troiani, C., Weiss, S., Meier, L.: Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in gps-denied environments. IEEE Robotics Automation Magazine 21(3), 26–40 (2014)

    Article  Google Scholar 

  39. McGuire, K.N., De Wagter, C., Tuyls, K., Kappen, H.J., de Croon, G.C.: Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Sci. Robot. 4(35) (2019)

  40. Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine 20(4), 60–71 (2013)

    Article  Google Scholar 

  41. Barrientos, A., Colorado, J., Cerro, J.D., Martinez, A., Rossi, C., Sanz, D., Valente, J.: Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots. Journal of Field Robotics 28(5), 667–689 (2011)

    Article  Google Scholar 

  42. Zheng, X., Jain, S., Koenig, S., Kempe, D.: Multi-robot forest coverage. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3852–3857. IEEE (2005)

  43. Nguyen, T., La, H.M., Le, T.D., Jafari, M.: Formation control and obstacle avoidance of multiple rectangular agents with limited communication ranges. IEEE Transactions on Control of Network Systems 4(4), 680–691 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Waibel, M., Keays, B., Augugliaro, F.: Drone shows: Creative potential and best practices. Technical report, ETH Zurich (2017)

    Google Scholar 

  45. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Siegwart, R., Beardsley, P.: Image and animation display with multiple mobile robots. The International Journal of Robotics Research 31(6), 753–773 (2012)

    Article  Google Scholar 

  46. Patle, B.K., Pandey, A., Parhi, D.R.K., Jagadeesh, A., et al.: A review: On path planning strategies for navigation of mobile robot. Defence Technology 15(4), 582–606 (2019)

    Article  Google Scholar 

  47. Connell, D., La, H.M.: Dynamic path planning and replanning for mobile robots using rrt. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1429–1434. IEEE (2017)

  48. Bakdi, A., Hentout, A., Boutami, H., Maoudj, A., Hachour, O., Bouzouia, B.: Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robotics and Autonomous Systems 89, 95–109 (2017)

    Article  Google Scholar 

  49. Nazarahari, M., Khanmirza, E., Doostie, S.: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm. Expert Systems with Applications 115, 106–120 (2019)

    Article  Google Scholar 

  50. Candeloro, M., Lekkas, A.M., Sørensen, A.J.: A voronoi-diagram-based dynamic path-planning system for underactuated marine vessels. Control Engineering Practice 61, 41–54 (2017)

    Article  Google Scholar 

  51. Patle, B.K., Pandey, A., Jagadeesh, A., Parhi, D.R.: Path planning in uncertain environment by using firefly algorithm. Defence Technology 14(6), 691–701 (2018)

    Article  Google Scholar 

  52. Patle, B.K., Parhi, D.R.K., Jagadeesh, A., Kashyap, S.K.: Matrix-binary codes based genetic algorithm for path planning of mobile robot. Computers & Electrical Engineering 67, 708–728 (2018)

    Article  Google Scholar 

  53. Lamini, C., Benhlima, S., Elbekri, A.: Genetic algorithm based approach for autonomous mobile robot path planning. Procedia Computer Science 127, 180–189 (2018)

    Article  Google Scholar 

  54. Low, E.S., Ong, P., Cheah, K.C.: Solving the optimal path planning of a mobile robot using improved q-learning. Robotics and Autonomous Systems 115, 143–161 (2019)

    Article  Google Scholar 

  55. Orozco-Rosas, U., Montiel, O., Sepúlveda, R.: Mobile robot path planning using membrane evolutionary artificial potential field. Applied Soft Computing 77, 236–251 (2019)

    Article  Google Scholar 

  56. Elhoseny, M., Shehab, A., Yuan, X.: Optimizing robot path in dynamic environments using genetic algorithm and bezier curve. Journal of Intelligent & Fuzzy Systems 33(4), 2305–2316 (2017)

    Article  MATH  Google Scholar 

  57. Elhoseny, M., Tharwat, A., Hassanien, A.E.: Bezier curve based path planning in a dynamic field using modified genetic algorithm. Journal of Computational Science 25, 339–350 (2018)

    Article  Google Scholar 

  58. Li, G., Chou, G.: Path planning for mobile robot using self-adaptive learning particle swarm optimization. Science China Information Sciences 61(5), 052204 (2018)

    Article  MathSciNet  Google Scholar 

  59. Tharwat, A., Elhoseny, M., Hassanien, A.E., Gabel, T., Kumar, A.: Intelligent bézier curve-based path planning model using chaotic particle swarm optimization algorithm. Cluster Computing 22(2), 4745–4766 (2019)

    Article  Google Scholar 

  60. Dai, X., Long, S., Zhang, Z., Gong, D.: Mobile robot path planning based on ant colony algorithm with a* heuristic method. Frontiers in Neurorobotics 13, 15 (2019)

    Article  Google Scholar 

  61. Connell, D., La Manh, H.: Extended rapidly exploring random tree-based dynamic path planning and replanning for mobile robots. International Journal of Advanced Robotic Systems 15(3), 1729881418773874 (2018)

    Article  Google Scholar 

  62. Zhu, D., Cao, X., Sun, B., Luo, C.: Biologically inspired self-organizing map applied to task assignment and path planning of an auv system. IEEE Transactions on Cognitive and Developmental Systems 10(2), 304–313 (2017)

    Article  Google Scholar 

  63. Matoui, F., Boussaid, B., Abdelkrim, M.N.: Distributed path planning of a multi-robot system based on the neighborhood artificial potential field approach. Simulation 95(7), 637–657 (2019)

    Article  Google Scholar 

  64. Faridi, A.Q., Sharma, S., Shukla, A., Tiwari, R., Dhar, J.: Multi-robot multi-target dynamic path planning using artificial bee colony and evolutionary programming in unknown environment. Intelligent Service Robotics 11(2), 171–186 (2018)

    Article  Google Scholar 

  65. Araki, B., Strang, J., Pohorecky, S., Qiu, C., Naegeli, T., Rus, D.: Multi-robot path planning for a swarm of robots that can both fly and drive. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 5575–5582. IEEE (2017)

  66. Sahib, T., Ali, M.: Multi-robot path planning based on multi-objective particle swarm optimization. IEEE Access 7, 2138–2147 (2018)

    Google Scholar 

  67. Panda, M., Das, B., Subudhi, B., Pati, B.B.: A comprehensive review of path planning algorithms for autonomous underwater vehicles. International Journal of Automation and Computing 17(3), 321–352 (2020)

    Article  Google Scholar 

  68. Kapoutsis, A.C., Malliou, C.M., Chatzichristofis, S.A., Kosmatopoulos, E.B.: Continuously informed heuristic a x2217;-optimal path retrieval inside an unknown environment. In: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), pp. 216–222 (2017)

  69. Yang, L., Qi, J., Song, D., Xiao, J., Han, J., Xia, Y.: Survey of robot 3d path planning algorithms. J. Control Sci. Eng.2016 (2016)

  70. Santos, J., Costa, P., Rocha, L.F., Moreira, A.P., Veiga, G.: Time enhanced a: Towards the development of a new approach for multi-robot coordination.. In: 2015 IEEE International Conference on Industrial Technology (ICIT). pp. 3314–3319. IEEE (2015)

  71. Teli, T.A., Wani, M.A.: A fuzzy based local minima avoidance path planning in autonomous robots. International Journal of Information Technology 13(1), 33–40 (2021)

    Article  Google Scholar 

  72. Kim, D.H.: Escaping route method for a trap situation in local path planning. International Journal of Control, Automation and Systems 7(3), 495–500 (2009)

    Article  Google Scholar 

  73. Park, M.G., Lee, M.C.: A new technique to escape local minimum in artificial potential field based path planning. KSME International Journal 17(12), 1876–1885 (2003)

    Article  Google Scholar 

  74. LaValle, S.M., Hutchinson, S.A.: Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation 14(6), 912–925 (1998)

    Article  Google Scholar 

  75. Guo, Y., Parker, L.E.: A distributed and optimal motion planning approach for multiple mobile robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 3, pp. 2612–2619. IEEE (2002)

  76. Mao, W., Liu, Z., Liu, H., Yang, F., Wang, M.: Research progress on synergistic technologies of agricultural multi-robots. Applied Sciences 11(4), 1448 (2021)

    Article  Google Scholar 

  77. Lin, H.-Y., Huang, Y.-C.: Collaborative complete coverage and path planning for multi-robot exploration. Sensors 21(11), 3709 (2021)

    Article  Google Scholar 

  78. Canny, J.: The Complexity of Robot Motion Planning. MIT press, Cambridge (1988)

    MATH  Google Scholar 

  79. Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview. Soft Computing 22(2), 387–408 (2018)

    Article  Google Scholar 

  80. Zhang, H.-Y., Lin, W.-M., Chen, A.-X.: Path planning for the mobile robot: A review. Symmetry 10(10), 450 (2018)

    Article  Google Scholar 

  81. Mac, T.T., Copot, C., Tran, D.T., De Keyser, R.: Heuristic approaches in robot path planning: A survey. Robotics and Autonomous Systems 86, 13–28 (2016)

    Article  Google Scholar 

  82. Radmanesh, M., Kumar, M., Guentert, P.H., Sarim, M.: Overview of path-planning and obstacle avoidance algorithms for uavs: a comparative study. Unmanned Systems 6(02), 95–118 (2018)

    Article  Google Scholar 

  83. Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T., Jurišica, L.: Path planning with modified a star algorithm for a mobile robot. Procedia Engineering 96, 59–69 (2014)

    Article  Google Scholar 

  84. LaValle, S.M., et al.: Rapidly-exploring random trees: A new tool for path planning (1998)

  85. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous Robot Vehicles, pp 396–404. Springer (1986)

  86. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)

    Article  Google Scholar 

  87. Yang, S.X., Meng, M.: An efficient neural network approach to dynamic robot motion planning. Neural Networks 13(2), 143–148 (2000)

    Article  Google Scholar 

  88. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: International Symposium on Stochastic Algorithms, pp. 169–178. Springer (2009)

  89. Yang, X.-S.: Nature-inspired Metaheuristic Algorithms. Luniver Press (2010)

  90. Mirjalili, Seyedali, Lewis, Andrew: The whale optimization algorithm. Advances in Engineering Software 95, 51–67 (2016)

    Article  Google Scholar 

  91. Laporte, G., Asef-Vaziri, A., Sriskandarajah, C.: Some applications of the generalized travelling salesman problem. Journal of the Operational Research Society 47(12), 1461–1467 (1996)

    Article  MATH  Google Scholar 

  92. Kapoutsis, A.C., Chatzichristofis, S.A., Kosmatopoulos, E.B.: A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions. The International Journal of Robotics Research 38(7), 813–832 (2019)

    Article  Google Scholar 

  93. Albani, D., IJsselmuiden, J., Haken, R., Trianni, V.: Monitoring and mapping with robot swarms for agricultural applications. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017)

  94. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications. Frontiers in Robotics and AI 7, 36 (2020)

    Article  Google Scholar 

  95. Blender, T., Buchner, T., Fernandez, B., Pichlmaier, B., Schlegel, C.: Managing a mobile agricultural robot swarm for a seeding task. In: IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 6879–6886. IEEE (2016)

  96. Fan, T., Long, P., Liu, W., Pan, J.: Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios. The International Journal of Robotics Research 39(7), 856–892 (2020)

    Article  Google Scholar 

  97. Wang, B., Liu, Z., Li, Q., Prorok, A.: Mobile robot path planning in dynamic environments through globally guided reinforcement learning. IEEE Robotics and Automation Letters 5(4), 6932–6939 (2020)

    Article  Google Scholar 

  98. Bae, H., Kim, G., Kim, J., Qian, D., Lee, S.: Multi-robot path planning method using reinforcement learning. Applied Sciences 9(15), 3057 (2019)

    Article  Google Scholar 

  99. Hu, J., Niu, H., Carrasco, J., Lennox, B., Arvin, F.: Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning. IEEE Transactions on Vehicular Technology 69(12), 14413–14423 (2020)

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, G.K., and S.A.C.; methodology, G.K.; validation, G.K., and L.D..; formal analysis, G.K.; investigation, ALL; writing—original draft preparation, G.K., and S.A.C.; writing—review and editing, ALL; visualization, G.K.; supervision, S.A.C., and L.D. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to G. Kyprianou.

Ethics declarations

Ethics Approval

All the authors mentioned in the manuscript have agreed for authorship, read and approved the manuscript, and given consent for submission and subsequent publication of the manuscript.

Consent to Participate

Not applicable.

Consent for Publication

All the authors mentioned in the manuscript have agreed to the publication of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyprianou, G., Doitsidis, L. & Chatzichristofis, S.A. Towards the Achievement of Path Planning with Multi-robot Systems in Dynamic Environments. J Intell Robot Syst 104, 15 (2022). https://doi.org/10.1007/s10846-021-01555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01555-3

Keywords