Abstract
Recent advances in technology lead to the use of robotic systems as part of the modern working environment. Single and multiple robotic systems work closely with humans to accomplish desired tasks, and the recent advancements have made the usage of multi-robot teams more appealing. One critical problem in utilizing the robot’s full potential is the Path planning problem and, while in the case of a single’s robot, path planning has been extensively investigated, in the case of Multiple Robotic Systems (MRS), especially in dynamic changing environments, there are significant open challenges. Based on the statement mentioned above, a detailed survey has been conducted to highlight these challenges and identify potential solutions. In addition, the beneficial use of MRS is presented, as opposed to single robotic systems through the literature, and already-achievable industry-related results are provided. It is concluded that the practical application of path planning in dynamic environments using MRS is still a field of research and development, requiring the community to engage more with practical applications.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availibility
The data presented in this study are available on request from the corresponding author.
References
LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
Amanatiadis, A.A., Chatzichristofis, S.A., Charalampous, K., Doitsidis, L., Kosmatopoulos, E.B., Tsalides, P., Gasteratos, A., Roumeliotis, S.I.: A multi-objective exploration strategy for mobile robots under operational constraints. IEEE Access 1, 691–702 (2013)
Erickson, L.H., LaValle, S.M.: A simple, but np-hard, motion planning problem. In: Twenty-Seventh AAAI Conference on Artificial Intelligence (2013)
Parker, L.E.: Path planning and motion coordination in multiple mobile robot teams. Encyclopedia of Complexity and System Science, pp. 5783–5800 (2009)
Mohanan, M.G., Salgoankar, A.: A survey of robotic motion planning in dynamic environments. Robotics and Autonomous Systems 100, 171–185 (2018)
Zafar, M.N., Mohanta, J.C.: Methodology for path planning and optimization of mobile robots: A review. Procedia Computer Science 133, 141–152 (2018)
Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control 51(3), 401–420 (2006)
Tournassoud, P.: A strategy for obstacle avoidance and its application to mullti-robot systems. In: Proceedings. 1986 IEEE International Conference on Robotics and Automation, vol. 3, pp 1224–1229. IEEE (1986)
Siméon, T., Leroy, S., Lauumond, J.-P.: Path coordination for multiple mobile robots: A resolution-complete algorithm. IEEE Transactions on Robotics and Automation 18(1), 42–49 (2002)
Van Den Berg, J., Ferguson, D., Kuffner, J.: Anytime path planning and replanning in dynamic environments. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 2366–2371. IEEE (2006)
Leven, P., Hutchinson, S.: A framework for real-time path planning in changing environments. The International Journal of Robotics Research 21(12), 999–1030 (2002)
Bennewitz, M., Burgard, W., Thrun, S.: Optimizing schedules for prioritized path planning of multi-robot systems. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), vol. 1, pp. 271–276. IEEE (2001)
Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation 20(2), 243–255 (2004)
Parker, L.E.: Distributed intelligence: Overview of the field and its application in multi-robot systems. In: AAAI Fall Symposium: Regarding the Intelligence in Distributed Intelligent Systems, pp. 1–6 (2007)
Zavlanos, M.M., Pappas, G.J.: Dynamic assignment in distributed motion planning with local coordination. IEEE Transactions on Robotics 24(1), 232–242 (2008)
Kloder, S., Hutchinson, S.: Path planning for permutation-invariant multirobot formations. IEEE Transactions on Robotics 22(4), 650–665 (2006)
Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and Automation, pp. 1928–1935. IEEE (2008)
Sophokleous, A., Christodoulou, P., Doitsidis, L., Chatzichristofis, S.A.: Computer vision meets educational robotics. Electronics 10(6), 730 (2021)
Véras, L.G.D., Medeiros, F.L.L., Guimaráes, L.N.F.: Systematic literature review of sampling process in rapidly-exploring random trees. IEEE Access 7, 50933–50953 (2019)
Perianes-Rodriguez, A., Waltman, L., Van Eck, N.J.: Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics 10(4), 1178–1195 (2016)
Rizk, Y., Awad, M., Tunstel, E.W.: Cooperative heterogeneous multi-robot systems: A survey. ACM Computing Surveys (CSUR) 52(2), 1–31 (2019)
Dorigo, M., Theraulaz, G., Trianni, V.: Swarm robotics: Past, present, and future. Proceedings of the IEEE 109(7), 1152–1165 (2021)
Yoon, S., Kim, J.: Fleet size optimization and collaborative route planning for multi-vehicle task allocation. In: AIAA Scitech 2019 Forum, pp. 1572 (2019)
Király, A., Christidou, M., Chován, T., Karlopoulos, E., Abonyi, J.: Minimization of off-grade production in multi-site multi-product plants by solving multiple traveling salesman problem. Journal of Cleaner Production 111, 253–261 (2016)
Kapoutsis, A.C., Chatzichristofis, S.A., Kosmatopoulos, E.B.: Darp: divide areas algorithm for optimal multi-robot coverage path planning. Journal of Intelligent & Robotic Systems 86(3–4), 663–680 (2017)
Khan, A., Noreen, I., Habib, Z.: On complete coverage path planning algorithms for non-holonomic mobile robots: Survey and challenges. J. Inf. Sci. Eng. 33(1) (2017)
Lakshmanan, A.K., Mohan, R.E., Ramalingam, B., Le, A.V., Veerajagadeshwar, P., Tiwari, K., Ilyas, M.: Complete coverage path planning using reinforcement learning for tetromino based cleaning and maintenance robot. Automation in Construction 112, 103078 (2020)
Liu, H., Ma, J., Huang, W.: Sensor-based complete coverage path planning in dynamic environment for cleaning robot. CAAI Transactions on Intelligence Technology 3(1), 65–72 (2018)
Yehoshua, R., Agmon, N., Kaminka, G.A.: Robotic adversarial coverage of known environments. The International Journal of Robotics Research 35(12), 1419–1444 (2016)
Wu, J., Wang, H., Li, N., Yao, P., Huang, Y., Yang, H.: Path planning for solar-powered uav in urban environment. Neurocomputing 275, 2055–2065 (2018)
Alonso-Mora, J., Baker, S., Rus, D.: Multi-robot formation control and object transport in dynamic environments via constrained optimization. The International Journal of Robotics Research 36(9), 1000–1021 (2017)
Čáp, M., Vokřínek, J., Kleiner, A.: Complete decentralized method for on-line multi-robot trajectory planning in well-formed infrastructures. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 25 (2015)
Ji, W., Li, J.L., Zhao, D.A., Jun, Y.: Obstacle avoidance path planning for harvesting robot manipulator based on maklink graph and improved ant colony algorithm. In: Applied Mechanics and Materials, vol. 530, pp. 1063–1067. Trans Tech Publ (2014)
Alonso-Mora, J., Beardsley, P., Siegwart, R.: Cooperative collision avoidance for nonholonomic robots. IEEE Transactions on Robotics 34(2), 404–420 (2018)
Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M.W., Willmann, J.S., Gramazio, F., Kohler, M., D’Andrea, R.: The flight assembled architecture installation: Cooperative construction with flying machines. IEEE Control Systems Magazine 34(4), 46–64 (2014)
Puig, D., García, M.A., Wu, L.: A new global optimization strategy for coordinated multi-robot exploration: Development and comparative evaluation. Robotics and Autonomous Systems 59(9), 635–653 (2011)
Renzaglia, A., Doitsidis, L., Martinelli, A., Kosmatopoulos, E.B.: Multi-robot three-dimensional coverage of unknown areas. The International Journal of Robotics Research 31(6), 738–752 (2012)
Scaramuzza, D., Achtelik, M., Doitsidis, L., Friedrich, F., Kosmatopoulos, E., Martinelli, A., Achtelik, M., Chli, M., Chatzichristofis, S., Kneip, L., Gurdan, D., Heng, L., Lee, G., Lynen, S., Pollefeys, M., Renzaglia, A., Siegwart, R., Stumpf, J., Tanskanen, P., Troiani, C., Weiss, S., Meier, L.: Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in gps-denied environments. IEEE Robotics Automation Magazine 21(3), 26–40 (2014)
McGuire, K.N., De Wagter, C., Tuyls, K., Kappen, H.J., de Croon, G.C.: Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Sci. Robot. 4(35) (2019)
Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine 20(4), 60–71 (2013)
Barrientos, A., Colorado, J., Cerro, J.D., Martinez, A., Rossi, C., Sanz, D., Valente, J.: Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots. Journal of Field Robotics 28(5), 667–689 (2011)
Zheng, X., Jain, S., Koenig, S., Kempe, D.: Multi-robot forest coverage. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3852–3857. IEEE (2005)
Nguyen, T., La, H.M., Le, T.D., Jafari, M.: Formation control and obstacle avoidance of multiple rectangular agents with limited communication ranges. IEEE Transactions on Control of Network Systems 4(4), 680–691 (2016)
Waibel, M., Keays, B., Augugliaro, F.: Drone shows: Creative potential and best practices. Technical report, ETH Zurich (2017)
Alonso-Mora, J., Breitenmoser, A., Rufli, M., Siegwart, R., Beardsley, P.: Image and animation display with multiple mobile robots. The International Journal of Robotics Research 31(6), 753–773 (2012)
Patle, B.K., Pandey, A., Parhi, D.R.K., Jagadeesh, A., et al.: A review: On path planning strategies for navigation of mobile robot. Defence Technology 15(4), 582–606 (2019)
Connell, D., La, H.M.: Dynamic path planning and replanning for mobile robots using rrt. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1429–1434. IEEE (2017)
Bakdi, A., Hentout, A., Boutami, H., Maoudj, A., Hachour, O., Bouzouia, B.: Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robotics and Autonomous Systems 89, 95–109 (2017)
Nazarahari, M., Khanmirza, E., Doostie, S.: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm. Expert Systems with Applications 115, 106–120 (2019)
Candeloro, M., Lekkas, A.M., Sørensen, A.J.: A voronoi-diagram-based dynamic path-planning system for underactuated marine vessels. Control Engineering Practice 61, 41–54 (2017)
Patle, B.K., Pandey, A., Jagadeesh, A., Parhi, D.R.: Path planning in uncertain environment by using firefly algorithm. Defence Technology 14(6), 691–701 (2018)
Patle, B.K., Parhi, D.R.K., Jagadeesh, A., Kashyap, S.K.: Matrix-binary codes based genetic algorithm for path planning of mobile robot. Computers & Electrical Engineering 67, 708–728 (2018)
Lamini, C., Benhlima, S., Elbekri, A.: Genetic algorithm based approach for autonomous mobile robot path planning. Procedia Computer Science 127, 180–189 (2018)
Low, E.S., Ong, P., Cheah, K.C.: Solving the optimal path planning of a mobile robot using improved q-learning. Robotics and Autonomous Systems 115, 143–161 (2019)
Orozco-Rosas, U., Montiel, O., Sepúlveda, R.: Mobile robot path planning using membrane evolutionary artificial potential field. Applied Soft Computing 77, 236–251 (2019)
Elhoseny, M., Shehab, A., Yuan, X.: Optimizing robot path in dynamic environments using genetic algorithm and bezier curve. Journal of Intelligent & Fuzzy Systems 33(4), 2305–2316 (2017)
Elhoseny, M., Tharwat, A., Hassanien, A.E.: Bezier curve based path planning in a dynamic field using modified genetic algorithm. Journal of Computational Science 25, 339–350 (2018)
Li, G., Chou, G.: Path planning for mobile robot using self-adaptive learning particle swarm optimization. Science China Information Sciences 61(5), 052204 (2018)
Tharwat, A., Elhoseny, M., Hassanien, A.E., Gabel, T., Kumar, A.: Intelligent bézier curve-based path planning model using chaotic particle swarm optimization algorithm. Cluster Computing 22(2), 4745–4766 (2019)
Dai, X., Long, S., Zhang, Z., Gong, D.: Mobile robot path planning based on ant colony algorithm with a* heuristic method. Frontiers in Neurorobotics 13, 15 (2019)
Connell, D., La Manh, H.: Extended rapidly exploring random tree-based dynamic path planning and replanning for mobile robots. International Journal of Advanced Robotic Systems 15(3), 1729881418773874 (2018)
Zhu, D., Cao, X., Sun, B., Luo, C.: Biologically inspired self-organizing map applied to task assignment and path planning of an auv system. IEEE Transactions on Cognitive and Developmental Systems 10(2), 304–313 (2017)
Matoui, F., Boussaid, B., Abdelkrim, M.N.: Distributed path planning of a multi-robot system based on the neighborhood artificial potential field approach. Simulation 95(7), 637–657 (2019)
Faridi, A.Q., Sharma, S., Shukla, A., Tiwari, R., Dhar, J.: Multi-robot multi-target dynamic path planning using artificial bee colony and evolutionary programming in unknown environment. Intelligent Service Robotics 11(2), 171–186 (2018)
Araki, B., Strang, J., Pohorecky, S., Qiu, C., Naegeli, T., Rus, D.: Multi-robot path planning for a swarm of robots that can both fly and drive. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 5575–5582. IEEE (2017)
Sahib, T., Ali, M.: Multi-robot path planning based on multi-objective particle swarm optimization. IEEE Access 7, 2138–2147 (2018)
Panda, M., Das, B., Subudhi, B., Pati, B.B.: A comprehensive review of path planning algorithms for autonomous underwater vehicles. International Journal of Automation and Computing 17(3), 321–352 (2020)
Kapoutsis, A.C., Malliou, C.M., Chatzichristofis, S.A., Kosmatopoulos, E.B.: Continuously informed heuristic a x2217;-optimal path retrieval inside an unknown environment. In: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), pp. 216–222 (2017)
Yang, L., Qi, J., Song, D., Xiao, J., Han, J., Xia, Y.: Survey of robot 3d path planning algorithms. J. Control Sci. Eng.2016 (2016)
Santos, J., Costa, P., Rocha, L.F., Moreira, A.P., Veiga, G.: Time enhanced a: Towards the development of a new approach for multi-robot coordination.. In: 2015 IEEE International Conference on Industrial Technology (ICIT). pp. 3314–3319. IEEE (2015)
Teli, T.A., Wani, M.A.: A fuzzy based local minima avoidance path planning in autonomous robots. International Journal of Information Technology 13(1), 33–40 (2021)
Kim, D.H.: Escaping route method for a trap situation in local path planning. International Journal of Control, Automation and Systems 7(3), 495–500 (2009)
Park, M.G., Lee, M.C.: A new technique to escape local minimum in artificial potential field based path planning. KSME International Journal 17(12), 1876–1885 (2003)
LaValle, S.M., Hutchinson, S.A.: Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation 14(6), 912–925 (1998)
Guo, Y., Parker, L.E.: A distributed and optimal motion planning approach for multiple mobile robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 3, pp. 2612–2619. IEEE (2002)
Mao, W., Liu, Z., Liu, H., Yang, F., Wang, M.: Research progress on synergistic technologies of agricultural multi-robots. Applied Sciences 11(4), 1448 (2021)
Lin, H.-Y., Huang, Y.-C.: Collaborative complete coverage and path planning for multi-robot exploration. Sensors 21(11), 3709 (2021)
Canny, J.: The Complexity of Robot Motion Planning. MIT press, Cambridge (1988)
Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview. Soft Computing 22(2), 387–408 (2018)
Zhang, H.-Y., Lin, W.-M., Chen, A.-X.: Path planning for the mobile robot: A review. Symmetry 10(10), 450 (2018)
Mac, T.T., Copot, C., Tran, D.T., De Keyser, R.: Heuristic approaches in robot path planning: A survey. Robotics and Autonomous Systems 86, 13–28 (2016)
Radmanesh, M., Kumar, M., Guentert, P.H., Sarim, M.: Overview of path-planning and obstacle avoidance algorithms for uavs: a comparative study. Unmanned Systems 6(02), 95–118 (2018)
Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T., Jurišica, L.: Path planning with modified a star algorithm for a mobile robot. Procedia Engineering 96, 59–69 (2014)
LaValle, S.M., et al.: Rapidly-exploring random trees: A new tool for path planning (1998)
Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous Robot Vehicles, pp 396–404. Springer (1986)
Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)
Yang, S.X., Meng, M.: An efficient neural network approach to dynamic robot motion planning. Neural Networks 13(2), 143–148 (2000)
Yang, X.-S.: Firefly algorithms for multimodal optimization. In: International Symposium on Stochastic Algorithms, pp. 169–178. Springer (2009)
Yang, X.-S.: Nature-inspired Metaheuristic Algorithms. Luniver Press (2010)
Mirjalili, Seyedali, Lewis, Andrew: The whale optimization algorithm. Advances in Engineering Software 95, 51–67 (2016)
Laporte, G., Asef-Vaziri, A., Sriskandarajah, C.: Some applications of the generalized travelling salesman problem. Journal of the Operational Research Society 47(12), 1461–1467 (1996)
Kapoutsis, A.C., Chatzichristofis, S.A., Kosmatopoulos, E.B.: A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions. The International Journal of Robotics Research 38(7), 813–832 (2019)
Albani, D., IJsselmuiden, J., Haken, R., Trianni, V.: Monitoring and mapping with robot swarms for agricultural applications. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017)
Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications. Frontiers in Robotics and AI 7, 36 (2020)
Blender, T., Buchner, T., Fernandez, B., Pichlmaier, B., Schlegel, C.: Managing a mobile agricultural robot swarm for a seeding task. In: IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 6879–6886. IEEE (2016)
Fan, T., Long, P., Liu, W., Pan, J.: Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios. The International Journal of Robotics Research 39(7), 856–892 (2020)
Wang, B., Liu, Z., Li, Q., Prorok, A.: Mobile robot path planning in dynamic environments through globally guided reinforcement learning. IEEE Robotics and Automation Letters 5(4), 6932–6939 (2020)
Bae, H., Kim, G., Kim, J., Qian, D., Lee, S.: Multi-robot path planning method using reinforcement learning. Applied Sciences 9(15), 3057 (2019)
Hu, J., Niu, H., Carrasco, J., Lennox, B., Arvin, F.: Voronoi-based multi-robot autonomous exploration in unknown environments via deep reinforcement learning. IEEE Transactions on Vehicular Technology 69(12), 14413–14423 (2020)
Funding
This research received no external funding.
Author information
Authors and Affiliations
Contributions
Conceptualization, G.K., and S.A.C.; methodology, G.K.; validation, G.K., and L.D..; formal analysis, G.K.; investigation, ALL; writing—original draft preparation, G.K., and S.A.C.; writing—review and editing, ALL; visualization, G.K.; supervision, S.A.C., and L.D. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Ethics Approval
All the authors mentioned in the manuscript have agreed for authorship, read and approved the manuscript, and given consent for submission and subsequent publication of the manuscript.
Consent to Participate
Not applicable.
Consent for Publication
All the authors mentioned in the manuscript have agreed to the publication of the manuscript.
Conflicts of Interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kyprianou, G., Doitsidis, L. & Chatzichristofis, S.A. Towards the Achievement of Path Planning with Multi-robot Systems in Dynamic Environments. J Intell Robot Syst 104, 15 (2022). https://doi.org/10.1007/s10846-021-01555-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10846-021-01555-3