Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Earth-based Simultaneous Localization and Mapping for Drones in Dynamic Environments

  • Short paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper addresses the problem of simultaneous localization, mapping, and moving object tracking (SLAMMOT) with application to unmanned aerial vehicles inside uncertain environments with both static and moving objects. Although this problem has been addressed by the community, the usual approach is to identify the moving objects and remove them from contributing to the localization and mapping algorithm. Conversely, the proposed strategy integrates the moving objects in the vehicle motions estimation, without compromising its accuracy. The proposed solution is based on the design of: i) an extended Kalman filter (EKF); ii) a modified version of the multiple hypothesis tracking method to perform data association and track moving objects; and iii) and the interacting multiple model algorithm to identify the motion models described by the environment’s objects. The performance of the devised SLAMMOT filter is studied in simulation and validated with a new public experimental dataset using an RGB-D camera on-board an instrumented quadrotor with ground-truth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ben-Ari, M., Mondada, F.: Robotic motion and odometry. Springer International Publishing, pp. 63–93 (2018)

  2. Gala, D., Sun, L.: Moving sound source localization and tracking using a self rotating bi-microphone array. In: Dynamic Systems and Control Conference, vol. 59148. American Society of Mechanical Engineers. p. V001T09A002 (2019)

  3. Thomas, J., Welde, J., Loianno, G., Daniilidis, K., Kumar, V.: Autonomous flight for detection, localization, and tracking of moving targets with a small quadrotor. IEEE Rob. Auto. Lett. 2(3), 1762–1769 (2017)

    Article  Google Scholar 

  4. Montiel, J., Mur-Arta, R., Tardós, J. D.: Orb-slam:, A versatile and accurate monocular. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  5. Li, T., Hailes, S., Julier, S., Liu, M.: Uav-based slam and 3d reconstruction system. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, pp 2496–2501 (2017)

  6. Lourenço, P., Guerreiro, B.J., Batista, P., Oliveira, P., Silvestre, C.: Preliminary results on globally asymptotically stable simultaneous localization and mapping in 3-D. In: American Control Conference (ACC), June, pp 3087–3092 (2013)

  7. Lourenço, P., Guerreiro, B.J., Batista, P., Oliveira, P., Silvestre, C.: Uncertainty characterization of the orthogonal procrustes problem with arbitrary covariance matrices. Pattern. Recogn. 61, 210–220 (2017)

    Article  Google Scholar 

  8. Guerreiro, B.J., Batista, P., Silvestre, C., Oliveira, P.: Sensor-based Simultaneous Localization and Mapping – Part I: GAS Robocentric Filter. In: American Control Conference (ACC), 2012, pp 6352–6357 (June 2012)

  9. Gala, D., Lindsay, N., Sun, L.: Realtime active sound source localization for unmanned ground robots using a self-rotational bi-microphone array. J Intell. Rob. Syst. 95(3-4), 935–954 (2019)

    Article  Google Scholar 

  10. Gala, D., Lindsay, N., Sun, L.: Multi-sound-source localization for small autonomous unmanned vehicles with a self-rotating bi-microphone array, arXiv:1804.05111 (2018)

  11. Wang, C.C., Thorpe, C.: Simultaneous localization and mapping with detection and tracking of moving objects. In: Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on IEEE, pp 2918–2924 (2002)

  12. Wang, C.C., Thorpe, C., Thrun, S., Hebert, M., Durrant-Whyte, H.: Simultaneous localization, mapping and moving object tracking. Int. J Robot. Res. 26(9), 889–916 (2007)

    Article  Google Scholar 

  13. Elfes, A.: Occupancy grids: A probabilistic framework for robot perception and navigation, Ph.D. dissertation Carnegie-Mellon University (1989)

  14. Reid, D.: An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24(6), 843–854 (1979)

    Article  Google Scholar 

  15. Blom, H.A.: An efficient filter for abruptly changing systems. In: The 23rd IEEE Conference on Decision and Control. IEEE, pp 656–658 (1984)

  16. Blom, H.A., Bar-Shalom, Y.: The interacting multiple model algorithm for systems with markovian switching coefficients. IEEE Trans. Autom. Control 33(8), 780–783 (1988)

    Article  Google Scholar 

  17. Lin , K.H., Wang, C.C.: Stereo-based simultaneous localization, mapping and moving object tracking. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on IEEE, pp 3975–3980 (2010)

  18. Wolf, D.F., Sukhatme, G.S.: Mobile robot simultaneous localization and mapping in dynamic environments. Auton. Robot. 19(1), 53–65 (2005)

    Article  Google Scholar 

  19. Vu, T.D., Burlet, J., Aycard, O.: Grid-based localization and local mapping with moving object detection and tracking. Inform. Fusion 12(1), 58–69 (2011)

    Article  Google Scholar 

  20. Simas, M., Guerreiro, B.J., Batista, P.: Preliminary results on 2-d simultaneous localization and mapping for aerial robots in dynamics environments. In: 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA), pp 180–185 (2019)

  21. Pukelsheim, F.: The three sigma rule. Am. Stat. 48(2), 88–91 (1994)

    MathSciNet  Google Scholar 

  22. Bar-Shalom, Y., Li, X.R.: Multitarget-multisensor tracking: principles and techniques, vol. 19. YBS Publishing, Storrs, CT (1995)

    Google Scholar 

  23. Bar-Shalom, Y., Tse, E.: Tracking in a cluttered environment with probabilistic data association. Automatica 11(5), 451–460 (1975)

    Article  Google Scholar 

  24. Fortmann, T.E., Bar-Shalom, Y., Scheffe, M.: Multi-target tracking using joint probabilistic data association. In: 1980 19th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes. IEEE, pp 807–812 (1980)

  25. Blackman, S., Popoli, R.: Design and analysis of modern tracking systems, Norwood MA: Artech House (1999)

  26. Rago, C., Willett, P., Streit, R.: A comparison of the jpdaf and pmht tracking algorithms. In: 1995 International Conference on Acoustics, Speech, and Signal Processing, vol. 5 IEEE, pp 3571–3574 (1995)

  27. Chiron, G., Gomez-Krämer, P., Ménard, M.: Detecting and tracking honeybees in 3d at the beehive entrance using stereo vision. EURASIP J Image Vid. Process. 2013(1), 59 (2013)

    Article  Google Scholar 

  28. Jouannin, S., Trassoudaine, L., Gallice, J.: Comparison of data association methods. application to road obstacle tracking using a doppler effect radar. IFAC Proc. Vol. 31(3), 489–494 (1998)

    Article  Google Scholar 

  29. Pitre, R.R., Jilkov, V.P., Li, X.R.: A comparative study of multiple-model algorithms for maneuvering target tracking. In: Signal Processing, Sensor Fusion, and Target Recognition XIV, vol. 5809. International Society for Optics and Photonics, pp 549–560 (2005)

  30. Tardós, J.D., Neira, J., Newman, P.M., Leonard, J.J.: Robust mapping and localization in indoor environments using sonar data. Int. J Robot. Res. 21(4), 311–330 (2002)

    Article  Google Scholar 

  31. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2d lidar slam. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 1271–1278 (2016)

  32. Raitoharju, M., Piché, R.: On computational complexity reduction methods for kalman filter extensions. IEEE Aerosp. Electron. Syst. Mag. 34(10), 2–19 (2019)

    Article  Google Scholar 

  33. Cadena, C., Neira, J.: SLAM In O(log n) with the Combined Kalman-Information Filter. Robot. Auton. Syst. 58(11), 1207–1219 (2010)

    Article  Google Scholar 

  34. Cong, S., Hong, L.: Computational complexity analysis for multiple hypothesis tracking. Math. Comput. Modell. 29(9), 1–16 (1999)

    Article  MathSciNet  Google Scholar 

  35. Ren, X., Huang, Z., Sun, S., Liu, D., Wu, J.: An efficient mht implementation using grasp. IEEE Trans. Aerosp. Electron. Syst. 50(1), 86–101 (2014)

    Article  Google Scholar 

  36. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: Kaze features. In: European Conference on Computer Vision. Springer, pp 214–227 (2012)

  37. Cox, I.J., Hingorani, S.L.: An efficient implementation of reid’s multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE Trans. Pattern. Anal. Mach. Intell. 18(2), 138–150 (1996)

    Article  Google Scholar 

  38. Neira, J., Tardós, J.D.: Data association in stochastic mapping using the joint compatibility test. IEEE Trans. Robot. Autom. 17(6), 890–897 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno J. Guerreiro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

*This work was partially funded by the FCT projects REPLACE (PTDC/EEI-AUT/32107/2017), CAPTURE (PTDC/EEI-AUT/1732/ 2020) and DECENTER (PTDC/EEI-AUT/29605/2017), which include Lisboa 2020 and PIDDAC funds, and also by projects LARSYS (UIDB/50009/2020) and CTS (UIDB/00066/2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simas, M., Guerreiro, B.J. & Batista, P. Earth-based Simultaneous Localization and Mapping for Drones in Dynamic Environments. J Intell Robot Syst 104, 58 (2022). https://doi.org/10.1007/s10846-022-01578-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01578-4

Keywords