Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Prediction of three-dimensional crutch walking patterns using a torque-driven model

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Computational prediction of 3D crutch-assisted walking patterns is a challenging problem that could be applied to study different biomechanical aspects of crutch walking in virtual subjects, to assist physiotherapists to choose the optimal crutch walking pattern for a specific subject, and to help in the design and control of exoskeletons, when crutches are needed for balance. The aim of this work is to generate a method to predict three-dimensional crutch-assisted walking motions following different patterns without tracking any experimental data. To reach this goal, we collected gait data from a healthy subject performing a four-point non-alternating crutch walking pattern, and developed a 3D torque-driven full-body model of the subject including the crutches and foot- and crutch-ground contact models. First, we developed a predictive (i.e., no tracking of experimental data) optimal control problem formulation to predict crutch walking cycles following the same pattern as the experimental data collected, using different cost functions. To reduce errors with respect to reference data, a cost function combining minimization terms of angular momentum, mechanical power, joint jerk and torque change was chosen. Then, the problem formulation was adapted to handle different foot- and crutch-ground conditions to make it capable of predicting three new crutch walking patterns, one of them at different speeds. A key aspect of our algorithm is that having ground reactions as additional controls allows one to define phases inside the cycle without the need of formulating a multiple-phase problem, thus facilitating the definition of different crutch walking patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Singh, A., Tetreault, L., Kalsi-Ryan, S., Nouri, A., Fehlings, M.G.: Global prevalence and incidence of traumatic spinal cord injury. J. Clin. Epidemiol. 6, 309–331 (2014). https://doi.org/10.2147/CLEP.S68889

    Article  Google Scholar 

  2. World Health Organization: WHO Global disability action plan 2014–2021: better health for all people with disability (2015)

  3. Haubert, L.L., Gutierrez, D.D., Newsam, C.J., Gronley, J.K., Mulroy, S.J., Perry, J.: A comparison of shoulder joint forces during ambulation with crutches versus a walker in persons with incomplete spinal cord injury. Arch. Phys. Med. Rehabil. (2006). https://doi.org/10.1016/j.apmr.2005.07.311

    Article  Google Scholar 

  4. Westerhoff, P., Graichen, F., Bender, A., Halder, A., Beier, A., Rohlmann, A., Bergmann, G.: In vivo measurement of shoulder joint loads during walking with crutches. Clin. Biomech. 27, 711–718 (2012). https://doi.org/10.1016/j.clinbiomech.2012.03.004

    Article  Google Scholar 

  5. Perez-Rizo, E., Trincado-Alonso, F., Pérez-Nombela, S., Del Ama-Espinosa, A., Jiménez-Díaz, F., Lozano-Berrio, V., Gil-Agudo, A.: Application of a model to analyze shoulder biomechanics in adult patients with spinal cord injury when walking with crutches in two different gait patterns. NeuroRehabilitation 40, 129–140 (2017). https://doi.org/10.3233/NRE-161398

    Article  Google Scholar 

  6. Fischer, J., Nüesch, C., Göpfert, B., Mündermann, A., Valderrabano, V., Hügle, T.: Forearm pressure distribution during ambulation with elbow crutches: a cross-sectional study. J. NeuroEng. Rehabil. 11, 61 (2014). https://doi.org/10.1186/1743-0003-11-61

    Article  Google Scholar 

  7. Miller, L.E., Zimmermann, A.K., Herbert, W.G.: Clinical effectiveness and safety of powered exoskeleton-assisted walking on SCI patients. Med. Devices Evid. Res. 9, 455–466 (2016). https://doi.org/10.2147/MDER.S103102

    Article  Google Scholar 

  8. Louie, D.R., Eng, J.J., Lam, T.: Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. J. NeuroEng. Rehabil. 12, 82–92 (2015). https://doi.org/10.1186/s12984-015-0074-9

    Article  Google Scholar 

  9. Lancini, M., Bodini, I., Sansoni, G.: Upper limb loads during robotic assisted gait: a measuring system to guide training. In: 20th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (2017). https://doi.org/10.1142/9789813231047_0074

    Chapter  Google Scholar 

  10. Behrman, A.L., Ardolino, E., Vanhiel, L.R., Kern, M., Atkinson, D., Lorenz, D.J., Harkema, S.J.: Assessment of functional improvement without compensation reduces variability of outcome measures after human spinal cord injury. Arch. Phys. Med. Rehabil. 93, 1518–1529 (2012). https://doi.org/10.1016/j.apmr.2011.04.027

    Article  Google Scholar 

  11. Liu, G., Zhang, Y., Xie, S.-Q.Q., Xue, A.: Optimal control and biomechanics of ambulation with spring-loaded crutches. Int. J. Adv. Robot. Syst. 8, 1–11 (2011). https://doi.org/10.5772/10664

    Article  Google Scholar 

  12. Ackermann, M., Taissun, B.A.: A computational study of the swing phase of the gait with standard and spring-loaded crutches. In: Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics, pp. 1476–1481 (2012). https://doi.org/10.1109/BioRob.2012.6290718

    Chapter  Google Scholar 

  13. Tashman, S., Zajac, F.E., Perkash, I.: Modeling and simulation of paraplegic ambulation in a reciprocating gait orthosis. J. Biomech. Eng. 117, 300–308 (1995). https://doi.org/10.1115/1.2794185

    Article  Google Scholar 

  14. Fournier, B.N., Lemaire, E.D., Smith, A.J.J., Doumit, M.: Modeling and simulation of a lower extremity powered exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 1596–1603 (2018). https://doi.org/10.1109/TNSRE.2018.2854605

    Article  Google Scholar 

  15. Mouzo, F., Lugris, U., Pamies-Vila, R., Cuadrado, J., Lugrís, U., Pamies-Vila, R., Cuadrado, J.: Skeletal-level control-based forward dynamic analysis of acquired healthy and assisted gait motion. Multibody Syst. Dyn. 44, 1–29 (2018). https://doi.org/10.1007/s11044-018-09634-4

    Article  MathSciNet  MATH  Google Scholar 

  16. van der Spek, J.H., Veltink, P.H., Hermens, H.J., Koopman, B.F.J.M., Boom, H.B.K.: A model-based approach to stabilizing crutch supported paraplegic standing by artificial hip joint stiffness. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 443–451 (2003). https://doi.org/10.1109/TNSRE.2003.819939

    Article  Google Scholar 

  17. Font-Llagunes, J.M., Barjau, A., Pàmies-Vilà, R., Kövecses, J.: Dynamic analysis of impact in swing-through crutch gait using impulsive and continuous contact models. Multibody Syst. Dyn. 28, 257–282 (2012). https://doi.org/10.1007/s11044-011-9300-9

    Article  MathSciNet  Google Scholar 

  18. Meyer, A.J., Eskinazi, I., Jackson, J.N., Rao, A.V., Patten, C., Fregly, B.J.: Muscle synergies facilitate computational prediction of subject-specific walking motions. Front. Bioeng. Biotechnol. 4, 77 (2016). https://doi.org/10.3389/fbioe.2016.00077

    Article  Google Scholar 

  19. Fregly, B.J., Reinbolt, J.A., Rooney, K.L., Mitchell, K.H., Chmielewski, T.L.: Design of patient-specific gait modifications for knee osteoarthritis rehabilitation. IEEE Trans. Biomed. Eng. 54, 1687–1695 (2007). https://doi.org/10.1109/TBME.2007.907637

    Article  Google Scholar 

  20. Esposito, E.R., Miller, R.H.: Maintenance of muscle strength retains a normal metabolic cost in simulated walking after transtibial limb loss. PLoS ONE 13, 1–19 (2018). https://doi.org/10.1371/journal.pone.0191310

    Article  Google Scholar 

  21. Sreenivasa, M., Millard, M., Felis, M.L., Mombaur, K., Wolf, S.I.: Optimal control based stiffness identification of an ankle-foot orthosis using a predictive walking model. Front. Comput. Neurosci. 11, 23 (2017)

    Article  Google Scholar 

  22. Mombaur, K., Ho Hoang, K.L.: How to best support sit to stand transfers of geriatric patients: motion optimization under external forces for the design of physical assistive devices. J. Biomech. 58, 131–138 (2017). https://doi.org/10.1016/j.jbiomech.2017.04.037

    Article  Google Scholar 

  23. Sardini, E., Serpelloni, M., Lancini, M.: Wireless instrumented crutches for force and movement measurements for gait monitoring. IEEE Trans. Instrum. Meas. 64, 3369–3379 (2015). https://doi.org/10.1109/TIM.2015.2465751

    Article  Google Scholar 

  24. Rajagopal, A., Dembia, C., DeMers, M., Delp, D., Hicks, J.L., Delp, S.: Full body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 63, 2068 (2016). https://doi.org/10.1109/TBME.2016.2586891

    Article  Google Scholar 

  25. Jackson, J.N., Hass, C.J., Fregly, B.J.: Development of a subject-specific foot-ground contact model for walking. J. Biomech. Eng. 138(9), 091002 (2016). https://doi.org/10.1115/1.4034060

    Article  Google Scholar 

  26. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. (1975). https://doi.org/10.1115/1.3423596

    Article  Google Scholar 

  27. Febrer-Nafría, M., Pallarès-López, R., Font-Llagunes, J.M.: Calibration of foot-ground and crutch-ground contact models for optimal control prediction of crutch-assisted walking motions. In: ECCOMAS Thematic Conference on Multibody Dynamics (2 pages), Duisburg (Germany)

  28. Van Den Bogert, A.J., Blana, D., Heinrich, D.: Implicit methods for efficient musculoskeletal simulation and optimal control. Proc. IUTAM 2, 297–316 (2011). https://doi.org/10.1016/j.piutam.2011.04.027

    Article  Google Scholar 

  29. Rao, A.V., Benson, D.A., Darby, C., Patterson, M.A., Francolin, C., Sanders, I., Huntington, G.T.: GPOPS—II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 37, 1–39 (2014). https://doi.org/10.1145/1731022.1731032

    Article  MathSciNet  Google Scholar 

  30. Dorschky, E., Nitschke, M., Seifer, A.K., van den Bogert, A.J., Eskofier, B.M.: Estimation of gait kinematics and kinetics from inertial sensor data using optimal control of musculoskeletal models. J. Biomech. 95, 109278 (2019). https://doi.org/10.1016/j.jbiomech.2019.07.022

    Article  Google Scholar 

  31. Kaphle, M., Eriksson, A.: Optimality in forward dynamics simulations. J. Biomech. 41, 1213–1221 (2008). https://doi.org/10.1016/j.jbiomech.2008.01.021

    Article  Google Scholar 

  32. Koch, M.W., Ringkamp, M., Leyendecker, S.: Discrete mechanics and optimal control of walking gaits. J. Comput. Nonlinear Dyn. 12, 021006 (2016). https://doi.org/10.1115/1.4035213

    Article  Google Scholar 

  33. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Physics-based modeling and simulation of human walking: a review of optimization-based and other approaches. Struct. Multidiscip. Optim. 42, 1–23 (2010). https://doi.org/10.1007/s00158-010-0496-8

    Article  MathSciNet  MATH  Google Scholar 

  34. Fluit, R., van der Krogt, M.M., van der Kooij, H., Verdonschot, N., Koopman, H.F.J.M.: A simple controller for the prediction of three-dimensional gait. J. Biomech. 45, 2610–2617 (2012). https://doi.org/10.1016/j.jbiomech.2012.08.019

    Article  Google Scholar 

  35. Ren, L., Jones, R.K., Howard, D.: Predictive modelling of human walking over a complete gait cycle. J. Biomech. 40, 1567–1574 (2007). https://doi.org/10.1016/j.jbiomech.2006.07.017

    Article  Google Scholar 

  36. Herr, H., Popovic, M.: Angular momentum in human walking. J. Exp. Biol. 211, 467–481 (2008). https://doi.org/10.1242/jeb.008573

    Article  Google Scholar 

  37. Felis, M.L., Mombaur, K.: Modeling and optimization of human walking. In: Mombaur, K., Berns, K. (eds.) Modeling, Simulation and Optimization, pp. 31–42 (2013)

    Google Scholar 

  38. Lane, P.L., LeBlanc, R.: Crutch walking. Orthop. Nurs. 9, 31–38 (1990)

    Article  Google Scholar 

  39. Ezati, M., Ghannadi, B., McPhee, J.: A review of simulation methods for human movement dynamics with emphasis on gait. Multibody Syst. Dyn. (2019). https://doi.org/10.1007/s11044-019-09685-1

    Article  MathSciNet  MATH  Google Scholar 

  40. Miller, R.H.: A comparison of muscle energy models for simulating human walking in three dimensions. J. Biomech. 47, 1373–1381 (2014). https://doi.org/10.1016/j.jbiomech.2014.01.049

    Article  Google Scholar 

  41. Umberger, B.R., Miller, R.H.: Optimal control modeling of human movement. In: Handbook of Human Motion (2017). https://doi.org/10.1007/978-3-319-30808-1

    Chapter  Google Scholar 

  42. Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optical trajectory in human multi-joint arm movement-minimum torque-change model. Biol. Cybern. 61, 89–101 (1989)

    Article  Google Scholar 

  43. Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., Kawato, M.: Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J. Neurophysiol. 81, 2140–2155 (2017). https://doi.org/10.1152/jn.1999.81.5.2140

    Article  Google Scholar 

  44. Wada, Y., Kaneko, Y., Nakano, E., Osu, R., Kawato, M.: Quantitative examinations for multi joint arm trajectory planning—using a robust calculation algorithm of the minimum commanded torque change trajectory. Neural Netw. 14, 381–393 (2001). https://doi.org/10.1016/S0893-6080(01)00026-0

    Article  Google Scholar 

  45. Lee, J.U., Kim, M.Y., Kim, J.H., Lee, J.A., Yoon, N.M., Hwang, B.Y., Kim, J.: Analysis of plantar foot pressure during the non-crutch, two-point, and four-point crutch gait performed by healthy volunteers. J. Phys. Ther. Sci. 23, 489–493 (2011)

    Article  Google Scholar 

  46. Perry, A.G., Potter, P.A., Ostendorf, W.: Nursing Interventions & Clinical Skills (2015)

    Google Scholar 

  47. Noreau, L., Richards, C.L., Comeau, F., Tardif, D.: In: Paraplegic Analysis of Swing-Through Gait and Non-disabled Individuals (1995)

    Chapter  Google Scholar 

  48. Schulz, B.W., Ashton-Miller, J.A., Alexander, N.B.: The effects of age and step length on joint kinematics and kinetics of large out-and-back steps. Clin. Biomech. 23, 609–618 (2008). https://doi.org/10.1016/J.CLINBIOMECH.2008.01.006

    Article  Google Scholar 

  49. Berret, B., Chiovetto, E., Nori, F., Pozzo, T.: Evidence for composite cost functions in arm movement planning: an inverse optimal control approach. PLoS Comput. Biol. 7, 1–10 (2011). https://doi.org/10.1371/journal.pcbi.1002183

    Article  MathSciNet  Google Scholar 

  50. Mombaur, K., Truong, A., Laumond, J.P.: From human to humanoid locomotion-an inverse optimal control approach. Auton. Robots 28, 369–383 (2010). https://doi.org/10.1007/s10514-009-9170-7

    Article  Google Scholar 

  51. Font-Llagunes, J.M., Lugrís, U., Clos, D., Alonso, F.J., Cuadrado, J.: Design, control and pilot study of a lightweight and modular robotic exoskeleton for walking assistance after spinal cord injury. J. Mech. Robot. 12, 031008 (2020)

    Article  Google Scholar 

  52. Gil-Agudo, A., Pérez-Rizo, E., Del Ama-Espinosa, A., Crespo-Ruiz, B., Pérez-Nombela, S., Sánchez-Ramos, A., Pàmies-Vilà, R., Sánchez-Ramos, A.: Comparative biomechanical gait analysis of patients with central cord syndrome walking with one crutch and two crutches. Clin. Biomech. 24, 551–557 (2009). https://doi.org/10.1016/j.clinbiomech.2009.04.009

    Article  Google Scholar 

  53. Freddolini, A.M., Esposito, F., Corvi, A., Braccio, P., Latella, L.: Does crutch length influence gait parameters after total hip replacement surgery? Gait Posture (2017). https://doi.org/10.1016/j.gaitpost.2017.07.035

    Article  Google Scholar 

  54. Segura, A., Piazza, S.J.: Mechanics of ambulation with standard and spring-loaded crutches. Arch. Phys. Med. Rehabil. 88, 1159–1163 (2007). https://doi.org/10.1016/j.apmr.2007.05.026

    Article  Google Scholar 

  55. Zhang, Y., Liu, G., Xie, S., Liger, A.: Biomechanical evaluation of an innovative spring-loaded axillary crutch design. Assist. Technol. 23, 225–231 (2011). https://doi.org/10.1080/10400435.2011.614676

    Article  Google Scholar 

Download references

Acknowledgements

We thank Fernando Salvucci and Víctor A. Carmona-Ortiz for helping with the instrumentation and calibration of the crutches. This work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO) along with the European Regional Development Fund (ERDF) under projects DPI2015-65959-C3-2-R and RTI2018-097290-B-C33, and by the BBVA Foundation under a 2018 Leonardo Grant for Researchers and Cultural Creators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Míriam Febrer-Nafría.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Febrer-Nafría, M., Pallarès-López, R., Fregly, B.J. et al. Prediction of three-dimensional crutch walking patterns using a torque-driven model. Multibody Syst Dyn 51, 1–19 (2021). https://doi.org/10.1007/s11044-020-09751-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09751-z

Keywords