Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Generating Photospheric Vector Magnetograms of Solar Active Regions for SOHO/MDI Using SDO/HMI and BBSO Data with Deep Learning

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar activity is often caused by the evolution of solar magnetic fields. Magnetic field parameters derived from photospheric vector magnetograms of solar active regions (ARs) have been used to analyze and forecast eruptive events, such as solar flares and coronal mass ejections. Unfortunately, the most recent Solar Cycle 24 was relatively weak with few large flares, though it is the only solar cycle in which consistent time-sequence vector magnetograms have been available through the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) since its launch in 2010. In this work, we look into another major instrument, namely the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) from 1996 to 2010. The data archive of SOHO/MDI covers a more active Solar Cycle 23 with many large flares. However, SOHO/MDI only has line-of-sight (LOS) magnetograms. We propose a new deep learning method, named MagNet, to learn from combined LOS magnetograms, \(B_{x}\) and \(B_{y}\), taken by SDO/HMI, along with H\(\alpha \) observations collected by the Big Bear Solar Observatory (BBSO), and to generate synthetic vector components \(B_{x}'\) and \(B_{y}'\) of ARs. These generated vector components, together with observational LOS data, would form vector magnetograms for SOHO/MDI. In this way, we can expand the availability of vector magnetograms to the period from 1996 to present. Experimental results demonstrate the good performance of the MagNet method. To our knowledge, this is the first time that deep learning has been used to generate photospheric vector magnetograms of ARs for SOHO/MDI using SDO/HMI and H\(\alpha \) data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

The trained MagNet model and datasets used in this study can be downloaded from https://nature.njit.edu/solardb/magnet.

References

  • Abduallah, Y., Wang, J.T.L., Nie, Y., Liu, C., Wang, H.: 2021, DeepSun: machine-learning-as-a-service for solar flare prediction. Res. Astron. Astrophys. 21(7), 160. DOI.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Xu, Y., Jing, J.: 2014, Global energetics of solar flares. I. Magnetic energies. Astrophys. J. 797(1), 50. DOI.

    Article  ADS  Google Scholar 

  • Bai, X., Liu, H., Deng, Y., Jiang, J., Guo, J., Bi, Y., Feng, T., Jin, Z., Cao, W., Su, J., Ji, K.: 2021, A deep learning method to estimate magnetic fields in solar active regions from photospheric continuum images. Astron. Astrophys. 652, A143. DOI.

    Article  ADS  Google Scholar 

  • Balles, L., Hennig, P.: 2018, Dissecting Adam: the sign, magnitude and variance of stochastic gradients. In: Proc. 35th Int. Conf. Machine Learning 80, 413. http://proceedings.mlr.press/v80/balles18a.html.

    Google Scholar 

  • Benson, B., Pan, W.D., Prasad, A., Gary, G.A., Hu, Q.: 2020, Forecasting solar cycle 25 using deep neural networks. Solar Phys. 295(5), 65. DOI.

    Article  ADS  Google Scholar 

  • Bobra, M.G., Couvidat, S.: 2015, Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798(2), 135. DOI.

    Article  ADS  Google Scholar 

  • Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.D.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs - space-weather HMI active region patches. Solar Phys. 289(9), 3549. DOI.

    Article  ADS  Google Scholar 

  • Chen, Y., Manchester, W.B., Hero, A.O., Toth, G., DuFumier, B., Zhou, T., Wang, X., Zhu, H., Sun, Z., Gombosi, T.I.: 2019, Identifying solar flare precursors using time series of SDO/HMI images and SHARP parameters. Space Weather 17(10), 1404. DOI.

    Article  ADS  Google Scholar 

  • Danier, D., Zhang, F., Bull, D.R.: 2022, ST-MFNet: a spatio-temporal multi-flow network for frame interpolation. In: IEEE/CVF Conf. Computer Vision and Pattern Recognition, 3511. DOI.

    Chapter  Google Scholar 

  • Denker, C., Johannesson, A., Marquette, W., Goode, P.R., Wang, H., Zirin, H.: 1999, Synoptic H\(\alpha \) full-disk observations of the sun from big bear solar observatory - I. Instrumentation, image processing, data products, and first results. Solar Phys. 184(1), 87. DOI.

    Article  ADS  Google Scholar 

  • Dhuri, D.B., Bhattacharjee, S., Hanasoge, S.M., Kiran Mahapatra, S.: 2022, Deep-learning reconstruction of sunspot vector magnetic fields for forecasting solar storms. Astrophys. J. 939(2), 64. DOI.

    Article  ADS  Google Scholar 

  • dos Santos, L.F.G., Narock, A., Nieves-Chinchilla, T., Nuñez, M., Kirk, M.: 2020, Identifying flux rope signatures using a deep neural network. Solar Phys. 295(10), 131. DOI.

    Article  ADS  Google Scholar 

  • Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y., Böhm, A., Deubner, J., Jäckel, Z., Seiwald, K., Dovzhenko, A., Tietz, O., Dal Bosco, C., Walsh, S., Saltukoglu, D., Tay, T.L., Prinz, M., Palme, K., Simons, M., Diester, I., Brox, T., Ronneberger, O.: 2019, U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16(1), 67. DOI.

    Article  Google Scholar 

  • Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: 2019, Dual attention network for scene segmentation. In: IEEE Conf. Computer Vision and Pattern Recognition, 3146. DOI.

    Chapter  Google Scholar 

  • Fu, J., Liu, J., Jiang, J., Li, Y., Bao, Y., Lu, H.: 2021, Scene segmentation with dual relation-aware attention network. IEEE Trans. Neural Netw. Learn. Syst. 32(6), 2547. DOI.

    Article  Google Scholar 

  • Galton, F.: 1886, Regression towards mediocrity in hereditary stature. J. Anthropol. Inst. G. B. Irel. 15, 246. DOI.

    Article  Google Scholar 

  • He, K., Zhang, X., Ren, S., Sun, J.: 2015, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: IEEE Int. Conf. Computer Vision, 1026. DOI.

    Chapter  Google Scholar 

  • He, K., Zhang, X., Ren, S., Sun, J.: 2016, Deep residual learning for image recognition. In: IEEE Conf. Computer Vision and Pattern Recognition, 770. DOI.

    Chapter  Google Scholar 

  • Hoeksema, J.T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., Norton, A., Bobra, M., Centeno, R., Leka, K.D., Barnes, G., Turmon, M.: 2014, The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: overview and performance. Solar Phys. 289(9), 3483. DOI.

    Article  ADS  Google Scholar 

  • Ichimoto, K., Sakurai, T., Yamaguchi, A., Kumagai, K., Nishino, Y., Suematsu, Y., Hiei, E., Hirayama, T.: 1991, Solar flare telescope and 10-cm new coronagraph. In: Uchida, Y., Canfield, R.C., Watanabe, T., Hiei, E. (eds.) Flare Physics in Solar Activity Maximum 22, 320. DOI.

    Chapter  Google Scholar 

  • Jiang, H., Wang, J., Liu, C., Jing, J., Liu, H., Wang, J.T.L., Wang, H.: 2020, Identifying and tracking solar magnetic flux elements with deep learning. Astrophys. J. Suppl. 250(1), 5. DOI.

    Article  ADS  Google Scholar 

  • Jiang, H., Jing, J., Wang, J., Liu, C., Li, Q., Xu, Y., Wang, J.T.L., Wang, H.: 2021, Tracing H\(\alpha \) fibrils through Bayesian deep learning. Astrophys. J. Suppl. 256(1), 20. DOI.

    Article  ADS  Google Scholar 

  • Jiang, H., Li, Q., Xu, Y., Hsu, W., Ahn, K., Cao, W., Wang, J.T.L., Wang, H.: 2022, Inferring line-of-sight velocities and Doppler widths from Stokes profiles of GST/NIRIS using stacked deep neural networks. Astrophys. J. 939(2), 66. DOI.

    Article  ADS  Google Scholar 

  • Keller, C.U., Harvey, J.W., Giampapa, M.S.: 2003, SOLIS: an innovative suite of synoptic instruments. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, SPIE Conf. Ser. 4853, 194. DOI.

    Chapter  Google Scholar 

  • Kim, T., Park, E., Lee, H., Moon, Y.-J., Bae, S.-H., Lim, D., Jang, S., Kim, L., Cho, I.-H., Choi, M., Cho, K.-S.: 2019, Solar farside magnetograms from deep learning analysis of STEREO/EUVI data. Nat. Astron. 3, 397. DOI.

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: an overview. Solar Phys. 243(1), 3. DOI.

    Article  ADS  Google Scholar 

  • Liu, C., Deng, N., Wang, J.T.L., Wang, H.: 2017, Predicting solar flares using SDO/HMI vector magnetic data products and the random forest algorithm. Astrophys. J. 843(2), 104. DOI.

    Article  ADS  Google Scholar 

  • Liu, H., Liu, C., Wang, J.T.L., Wang, H.: 2019, Predicting solar flares using a long short-term memory network. Astrophys. J. 877(2), 121. DOI.

    Article  ADS  Google Scholar 

  • Liu, H., Liu, C., Wang, J.T.L., Wang, H.: 2020b, Predicting coronal mass ejections using SDO/HMI vector magnetic data products and recurrent neural networks. Astrophys. J. 890(1), 12. DOI.

    Article  ADS  Google Scholar 

  • Liu, H., Xu, Y., Wang, J., Jing, J., Liu, C., Wang, J.T.L., Wang, H.: 2020a, Inferring vector magnetic fields from Stokes profiles of GST/NIRIS using a convolutional neural network. Astrophys. J. 894(1), 70. DOI.

    Article  ADS  Google Scholar 

  • Liu, J., Wang, Y., Huang, X., Korsós, M.B., Jiang, Y., Wang, Y., Erdélyi, R.: 2021, Reliability of AI-generated magnetograms from only EUV images. Nat. Astron. 5, 108. DOI.

    Article  ADS  Google Scholar 

  • Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C.: 2020, PULSE: self-supervised photo upsampling via latent space exploration of generative models. In: IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2434. DOI.

    Chapter  Google Scholar 

  • Metcalf, T.R., Leka, K.D., Mickey, D.L.: 2005, Magnetic free energy in NOAA active region 10486 on 2003 October 29. Astrophys. J. Lett. 623(1), L53. DOI.

    Article  ADS  Google Scholar 

  • Mickey, D.L.: 1985, The Haleakala Stokes polarimeter. Solar Phys. 97(2), 223. DOI.

    Article  ADS  Google Scholar 

  • Mickey, D.L., Canfield, R.C., Labonte, B.J., Leka, K.D., Waterson, M.F., Weber, H.M.: 1996, The imaging vector magnetograph at Haleakala. Solar Phys. 168(2), 229. DOI.

    Article  ADS  Google Scholar 

  • Otruba, W.: 1999, High cadence digital full disk H\(\alpha \) patrol device at Kanzelhöhe. Third Adv. Solar Phys. Euroconf. Magnetic Fields and Oscillations 184, 314. ADS.

    ADS  Google Scholar 

  • Otruba, W., Freislich, H., Hanslmeier, A.: 2008, Kanzelhöhe photosphere telescope (KPT). Cent. Eur. Astrophys. Bull. 32, 1. ADS.

    ADS  Google Scholar 

  • Pearson, K.: 1895, Notes on regression and inheritance in the case of two parents. Proc. Roy. Soc. London 58(347–352), 240. DOI.

    Article  Google Scholar 

  • Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: 2022, High-resolution image synthesis with latent diffusion models. In: IEEE/CVF Conf. Computer Vision and Pattern Recognition, 10674. DOI.

    Chapter  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The solar oscillations investigation - Michelson Doppler imager. Solar Phys. 162(1–2), 129. DOI.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275(1–2), 207. DOI.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., DeRosa, M.L., Metcalf, T., Barnes, G., Lites, B., Tarbell, T., McTiernan, J., Valori, G., Wiegelmann, T., Wheatland, M.S., Amari, T., Aulanier, G., Démoulin, P., Fuhrmann, M., Kusano, K., Régnier, S., Thalmann, J.K.: 2008, Nonlinear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection. Astrophys. J. 675(2), 1637. DOI.

    Article  ADS  Google Scholar 

  • Sen, A., Srivastava, M.: 1990, Regression Analysis, Springer, New York. DOI.

    Book  MATH  Google Scholar 

  • Steinegger, M., Denker, C., Goode, P.R., Marquette, W.H., Varsik, J., Wang, H., Otruba, W., Freislich, H., Hanslmeier, A., Luo, G., Chen, D., Zhang, Q.: 2000, The new global high-resolution H\(\alpha\) network: First observations and first results 463 617. ADS.

  • Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: 2012, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748(2), 77. DOI.

    Article  ADS  Google Scholar 

  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The solar optical telescope for the Hinode mission: an overview. Solar Phys. 249(2), 167. DOI.

    Article  ADS  Google Scholar 

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u., Polosukhin, I.: 2017, Attention is all you need. Adv. Neural Information Processing Systems 30. https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053C1C4a845aa-Abstract.html.

  • Wang, X., Chen, Y., Toth, G., Manchester, W.B., Gombosi, T.I., Hero, A.O., Jiao, Z., Sun, H., Jin, M., Liu, Y.: 2020, Predicting solar flares with machine learning: investigating solar cycle dependence. Astrophys. J. 895(1), 3. DOI.

    Article  ADS  Google Scholar 

  • Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, An optimization approach to reconstructing force-free fields. Astrophys. J. 540(2), 1150. DOI.

    Article  ADS  Google Scholar 

  • Wiegelmann, T.: 2004, Optimization code with weighting function for the reconstruction of coronal magnetic fields. Solar Phys. 219(1), 87. DOI.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Inhester, B., Sakurai, T.: 2006, Preprocessing of vector magnetograph data for a nonlinear force-free magnetic field reconstruction. Solar Phys. 233(2), 215. DOI.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Thalmann, J.K., Schrijver, C.J., De Rosa, M.L., Metcalf, T.R.: 2008, Can we improve the preprocessing of photospheric vector magnetograms by the inclusion of chromospheric observations? Solar Phys. 247(2), 249. DOI.

    Article  ADS  Google Scholar 

  • Zhang, H., Dana, K.J., Shi, J., Zhang, Z., Wang, X., Tyagi, A., Agrawal, A.: 2018, Context encoding for semantic segmentation. In: IEEE Conf. Computer Vision and Pattern Recognition, 7151. DOI.

    Chapter  Google Scholar 

  • Zhao, H., Jia, J., Koltun, V.: 2020, Exploring self-attention for image recognition. In: IEEE/CVF Conf. Computer Vision and Pattern Recognition, 10073. DOI.

    Chapter  Google Scholar 

  • Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q.: 2021, A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43. DOI.

    Article  Google Scholar 

Download references

Acknowledgments

SOHO is a project of international cooperation between ESA and NASA. SDO is a NASA mission. The BBSO operation is supported by the New Jersey Institute of Technology and U.S. NSF grant AGS-1821294. The MagNet model is implemented in Python and TensorFlow. This work was supported by U.S. NSF grants AGS-1927578, AGS-1954737, AGS-2149748 and AGS-2228996. We thank the handling editor and anonymous referee for the thoughtful comments and constructive suggestions that have helped us improve the presentation and content of this article.

Author information

Authors and Affiliations

Authors

Contributions

H.W. conceived the study. H.J. wrote the manuscript. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Haodi Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Li, Q., Liu, N. et al. Generating Photospheric Vector Magnetograms of Solar Active Regions for SOHO/MDI Using SDO/HMI and BBSO Data with Deep Learning. Sol Phys 298, 87 (2023). https://doi.org/10.1007/s11207-023-02180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02180-z

Keywords