Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Applying Optimization Algorithms to Tuberculosis Antibiotic Treatment Regimens

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Tuberculosis (TB), one of the most common infectious diseases, requires treatment with multiple antibiotics taken over at least 6 months. This long treatment often results in poor patient-adherence, which can lead to the emergence of multi-drug resistant TB. New antibiotic treatment strategies are sorely needed. New antibiotics are being developed or repurposed to treat TB, but as there are numerous potential antibiotics, dosing sizes and potential schedules, the regimen design space for new treatments is too large to search exhaustively. Here we propose a method that combines an agent-based multi-scale model capturing TB granuloma formation with algorithms for mathematical optimization to identify optimal TB treatment regimens.

Methods

We define two different single-antibiotic treatments to compare the efficiency and accuracy in predicting optimal treatment regimens of two optimization algorithms: genetic algorithms (GA) and surrogate-assisted optimization through radial basis function (RBF) networks. We also illustrate the use of RBF networks to optimize double-antibiotic treatments.

Results

We found that while GAs can locate optimal treatment regimens more accurately, RBF networks provide a more practical strategy to TB treatment optimization with fewer simulations, and successfully estimated optimal double-antibiotic treatment regimens.

Conclusions

Our results indicate surrogate-assisted optimization can locate optimal TB treatment regimens from a larger set of antibiotics, doses and schedules, and could be applied to solve optimization problems in other areas of research using systems biology approaches. Our findings have important implications for the treatment of diseases like TB that have lengthy protocols or for any disease that requires multiple drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

TB:

Tuberculosis

INH:

Isoniazid

RIF:

Rifampin

GA:

Genetic algorithm

RBF:

Radial basis function

PK/PD:

Pharmacokinetics/pharmacodynamics

ODE:

Ordinary differential equation

PDE:

Partial differential equation

LHS:

Latin hypercube sampling

References

  1. Akhtar, T., and C.A. Shoemaker. Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection. J. Glob. Optim. Springer US, 64:17–32, 2016.

  2. Alba, E., G. Luque, and S. Nesmachnow. Parallel metaheuristics: recent advances and new trends. Int. Trans. Oper. Res. 20:1–48, 2013.

    Article  MATH  Google Scholar 

  3. An, G., Q. Mi, J. Dutta-Moscato, and Y. Vodovotz. Agent-based models in translational systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 1:159–171, 2009.

    Article  Google Scholar 

  4. An, G., et al. Optimization and control of agent-based models in biology: a perspective. Bull. Math. Biol. 79:63–87, 2017.

    Article  MATH  MathSciNet  Google Scholar 

  5. CDC. Treatment of Tuberculosis. Arch. Intern. Med., 2003.

  6. Chang, K. C., C. C. Leung, J. Grosset, and W. W. Yew. Treatment of tuberculosis and optimal dosing schedules. Thorax 66:997–1007, 2011.

    Article  Google Scholar 

  7. Chapa, J., G. An, and S. A. Kulkarni. Examining the relationship between pre-malignant breast lesions, carcinogenesis and tumor evolution in the mammary epithelium using an agent-based model. PLoS ONE 11:1–24, 2016.

    Article  Google Scholar 

  8. Cilfone, N. A., D. E. Kirschner, and J. J. Linderman. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems. Cell. Mol. Bioeng. 8:119–136, 2015.

    Article  Google Scholar 

  9. Cilfone, N. A., C. R. Perry, D. E. Kirschner, and J. J. Linderman. Multi-scale modeling predicts a balance of tumor necrosis factor-a and interleukin-10 controls the granuloma environment during Mycobacterium truberculosis infection. PLoS ONE 8:e68680, 2013.

    Article  Google Scholar 

  10. Cosgrove, J., et al. Agent-based modeling in systems pharmacology. CPT Pharmacomet. Syst. Pharmacol. 4:615–629, 2015.

    Article  Google Scholar 

  11. Diaz-Manriquez, A., G. Toscano-Pulido, and W. Gomez-Flores. On the selection of surrogate models in evolutionary optimization algorithms. 2011 IEEE Congr. Evol. Comput. CEC 2155–2162, 2011.

  12. Egelund, E. F., A. Alsultan, and C. A. Peloquin. Optimizing the Clinical pharmacology of tuberculosis medications. Clin. Pharmacol. Ther. 98:387–393, 2015.

    Article  Google Scholar 

  13. Fallahi-Sichani, M., M. El-Kebir, S. Marino, D. E. Kirschner, and J. J. Linderman. Multiscale computational modeling reveals a critical role for TNF-α receptor 1 dynamics in tuberculosis granuloma formation. J. Immunol. 186:3472–3483, 2011.

    Article  Google Scholar 

  14. Finley, S.D., L.-H. Chu, and A.S. Popel. Computational systems biology approaches to anti-angiogenic cancer therapeutics. Drug Discov. Today Elsevier Ltd, 20:187–197, 2015.

  15. Forrester, A. I. J., A. Sóbester, and A. J. Keane. Multi-fidelity optimization via surrogate modelling. Proc. R. Soc. A 463:3251–3269, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  16. Forrester, A. I. J., A. Sóbester, and A. J. Keane. Engineering Design via Surrogate Modelling: A Practical Guide. Hoboken: John Wiley & Sons, 2008.

    Book  Google Scholar 

  17. Gillespie, S. H., et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N. Engl. J. Med. 371:1577–1587, 2014.

    Article  Google Scholar 

  18. Gutmann, H. M. A radial basis function method for global optimization. J. Glob. Optim. 19:201–227, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  19. Houben, R. M. G. J., and P. J. Dodd. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 13:1–13, 2016.

    Article  Google Scholar 

  20. Hunt, C. A., R. C. Kennedy, S. H. J. Kim, and G. E. P. Ropella. Agent-based modeling: a systematic assessment of use cases and requirements for enhancing pharmaceutical research and development productivity. WIREs Syst. Biol. Med. 5:461–480, 2013.

    Article  Google Scholar 

  21. Jin, Y. Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1:61–70, 2011.

    Article  Google Scholar 

  22. Jones, D. R. A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21:345–383, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  23. Jones, D. R., M. Schonlau, and J. William. Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13:455–492, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  24. Kia, R., F. Khaksar-Haghani, N. Javadian, and R. Tavakkoli-Moghaddam. Solving a multi-floor layout design model of a dynamic cellular manufacturing system by an efficient genetic algorithm. J. Manuf. Syst. The Society of Manufacturing Engineers, 33:218–232, 2014.

  25. Kirschner, D., S. Lenhart, and S. Serbin. Optimal control of the chemotherapy of HIV. J. Math. Biol. 35:775–792, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  26. Kjellsson, M. C., et al. Pharmacokinetic evaluation of the penetration of antituberculosis agents in rabbit pulmonary lesions. Antimicrob. Agents Chemother. 56:446–457, 2012.

    Article  Google Scholar 

  27. Kuya, Y., K. Takeda, X. Zhang, and A. I. J. Forrester. Multifidelity surrogate modeling of experimental and computational aerodynamic data sets. AIAA J. 49:289–298, 2011.

    Article  Google Scholar 

  28. Lee, B.-Y. et al. Drug regimens identified and optimized by output-driven platform markedly reduce tuberculosis treatment time. Nat. Commun. 8, 2017.

  29. Lin, P. L., et al. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc. Natl. Acad. Sci. 109:14188–14193, 2012.

    Article  Google Scholar 

  30. Linderman, J.J., N.A. Cilfone, E. Pienaar, C. Gong, and D.E. Kirschner. A multi-scale approach to designing therapeutics for tuberculosis. Integr. Biol. Royal Society of Chemistry, 7:591–609, 2015.

  31. Lollini, P.-L., S. Motta, and F. Pappalardo. Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator. BMC Bioinform. 7:352, 2006.

    Article  Google Scholar 

  32. Man, K. F., K. S. Tang, and S. Kwong. Genetic algorithms: concepts and applications. IEEE Trans. Ind. Electron. 43:519–534, 1996.

    Article  Google Scholar 

  33. Marino, S., I. B. Hogue, C. J. Ray, and D. E. Kirschner. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254:178–196, 2008.

    Article  MathSciNet  Google Scholar 

  34. Martin, K. S., K. M. Virgilio, S. M. Peirce, and S. S. Blemker. Computational modeling of muscle regeneration and adaptation to advance muscle tissue regeneration strategies. Cells Tissues Organs 202:250–266, 2015.

    Article  Google Scholar 

  35. Mckay, A. M. D., R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245, 1979.

    MATH  MathSciNet  Google Scholar 

  36. Mclaren, Z. M., A. A. Milliken, A. J. Meyer, and A. R. Sharp. Does directly observed therapy improve tuberculosis treatment? More evidence is needed to guide tuberculosis policy. BMC Infect. Dis. 16:537, 2016.

    Article  Google Scholar 

  37. Melin, P., and O. Castillo. A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition. Appl. Soft Comput. J. Elsevier B.V., 21:568–577, 2014.

  38. Menzies, D., et al. Effect of duration and intermittency of rifampin on tuberculosis treatment outcomes: a systematic review and meta-analysis. PLoS Med. 6:1–18, 2009.

    Article  Google Scholar 

  39. Munro, S. A., S. A. Lewin, H. J. Smith, M. E. Engel, A. Fretheim, and J. Volmink. Patient adherence to tuberculosis treatment: a systematic review of qualitative research. PLoS Med. 4:1230–1245, 2007.

    Article  Google Scholar 

  40. Nuermberger, E. L., et al. Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis. Am. J. Respir. Crit. Care Med. 170:1131–1134, 2004.

    Article  Google Scholar 

  41. Nuermberger, E. L., et al. Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am. J. Respir. Crit. Care Med. 169:266–421, 2004.

    Article  Google Scholar 

  42. Orr, M.J.L. Introduction to radial basis function networks., 1996. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.133.7043.

  43. Palladini, A., et al. In silico modeling and in vivo efficacy of cancer-preventive vaccinations. Cancer Res. 70:7755–7763, 2010.

    Article  Google Scholar 

  44. Pienaar, E. et al. A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment. J. Theor. Biol. Elsevier, 367:166–179, 2015. Available from: http://dx.doi.org/10.1016/j.jtbi.2014.11.021.

  45. Pienaar, E., V. Dartois, J. J. Linderman, and D. E. Kirschner. In silico evaluation and exploration of antibiotic tuberculosis treatment regimens. BMC Syst. Biol. 9:79, 2015.

    Article  Google Scholar 

  46. Prideaux, B., et al. High-sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in tuberculosis-infected rabbit lungs and granulomatous lesions. Anal. Chem. 83:2112–2118, 2011.

    Article  Google Scholar 

  47. Reese, C. S., A. G. Wilson, M. Hamada, H. F. Martz, and K. J. Ryan. Integrated analysis of computer and physical experiments. Technometrics 46:153–164, 2004.

    Article  MathSciNet  Google Scholar 

  48. Silva, A., et al. Output-driven feedback system control platform optimizes combinatorial therapy of tuberculosis using a macrophage cell culture model. PNAS 113:2172–2179, 2016.

    Article  Google Scholar 

  49. Sóbester, A., A. I. J. Forrester, D. J. J. Toal, E. Tresidder, and S. Tucker. Engineering design applications of surrogate-assisted optimization techniques. Optim. Eng. 15:243–265, 2014.

    Article  MATH  Google Scholar 

  50. Steffen, R., et al. Patients’ costs and cost-effectiveness of tuberculosis treatment in dots and non-dots facilities in Rio de Janeiro, Brazil. PLoS ONE 5:1–7, 2010.

    Article  Google Scholar 

  51. Stephenson, B., C. Lanzas, S. Lenhart, and J. Day. Optimal control of vaccination rate in an epidemiological model of Clostridium difficile transmission. Berlin Heidelberg: J. Math. Biol. Springer, 2017.

    MATH  Google Scholar 

  52. Walpole, J., J. A. Papin, and S. M. Peirce. Multiscale computational models of complex biological systems. Annu. Rev. Biomed. Eng. 15:137–154, 2013.

    Article  Google Scholar 

  53. Wang, Z., J. D. Butner, V. Cristini, and T. S. Deisboeck. Integrated PK-PD and agent-based modeling in oncology. J. Pharmacokinet. Pharmacodyn. 42:179–189, 2015.

    Article  Google Scholar 

  54. WHO. Integrated PK-PD and agent-based modeling in oncology. J. Pharmacokinet. Pharmacodyn. 42:179–189, 2016.

    Google Scholar 

  55. Zumla, A., P. Nahid, and S.T. Cole. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. Nature Publishing Group, 12:388–404, 2013.

  56. Zumla, A.I. et al. New antituberculosis drugs, regimens, and adjunct therapies: Needs, advances, and future prospects. Lancet Infect. Dis. Elsevier Ltd, 14:327–340, 2014.

Download references

Acknowledgements

This research was supported by the following grants from the National Institutes of Health: U01HL131072, R01AI123093 and R01HL110811. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number MCB140228. We thank Paul Wolberg for computational assistance and Chang Gong for initial efforts on the GA and Fig. 1 calculations.

Conflict of interest

Joseph M. Cicchese, Elsje Pienaar, Denise E. Kirschner, and Jennifer J. Linderman declare that they have no conflicts of interest.

Ethical Standards

No human or animal studies were performed by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denise E. Kirschner or Jennifer J. Linderman.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicchese, J.M., Pienaar, E., Kirschner, D.E. et al. Applying Optimization Algorithms to Tuberculosis Antibiotic Treatment Regimens. Cel. Mol. Bioeng. 10, 523–535 (2017). https://doi.org/10.1007/s12195-017-0507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-017-0507-6

Keywords