Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-16T15:58:37.227Z Has data issue: false hasContentIssue false

Laboratory-scale swash flows generated by a non-breaking solitary wave on a steep slope

Published online by Cambridge University Press:  21 May 2018

P. Higuera*
Affiliation:
Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
P. L.-F. Liu
Affiliation:
Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA Institute of Hydrological and Oceanic Sciences, National Central University, Jhongli, Taoyuan, 320, Taiwan
C. Lin
Affiliation:
Department of Civil Engineering, National Chung Hsing University, Taichung, 402, Taiwan
W.-Y. Wong
Affiliation:
Department of Civil Engineering, National Chung Hsing University, Taichung, 402, Taiwan
M.-J. Kao
Affiliation:
Department of Civil Engineering, National Chung Hsing University, Taichung, 402, Taiwan
*
Email address for correspondence: phigueracoastal@gmail.com

Abstract

The main goal of this paper is to provide insights into swash flow dynamics, generated by a non-breaking solitary wave on a steep slope. Both laboratory experiments and numerical simulations are conducted to investigate the details of runup and rundown processes. Special attention is given to the evolution of the bottom boundary layer over the slope in terms of flow separation, vortex formation and the development of a hydraulic jump during the rundown phase. Laboratory experiments were performed to measure the flow velocity fields by means of high-speed particle image velocimetry (HSPIV). Detailed pathline patterns of the swash flows and free-surface profiles were also visualized. Highly resolved computational fluid dynamics (CFD) simulations were carried out. Numerical results are compared with laboratory measurements with a focus on the velocities inside the boundary layer. The overall agreement is excellent during the initial stage of the runup process. However, discrepancies in the model/data comparison grow as time advances because the numerical model does not simulate the shoreline dynamics accurately. Introducing small temporal and spatial shifts in the comparison yields adequate agreement during the entire rundown process. Highly resolved numerical solutions are used to study physical variables that are not measured in laboratory experiments (e.g. pressure field and bottom shear stress). It is shown that the main mechanism for vortex shedding is correlated with the large pressure gradient along the slope as the rundown flow transitions from supercritical to subcritical, under the developing hydraulic jump. Furthermore, the bottom shear stress analysis indicates that the largest values occur at the shoreline and that the relatively large bottom shear stress also takes place within the supercritical flow region, being associated with the backwash vortex system rather than the plunging wave. It is clearly demonstrated that the combination of laboratory observations and numerical simulations have indeed provided significant insights into the swash flow processes.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. & Westerweel, J. 2011 Particle Image Velocimetry. Cambridge University Press.Google Scholar
Albadawi, A., Donoghue, D. B., Robinson, A. J., Murray, D. B. & Delauré, Y. M. C. 2013 Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment. Intl J. Multiphase Flow 53, 1128.Google Scholar
Barnes, M. P., O’Donoghue, T., Alsina, J. & Baldock, T. 2009 Direct bed shear stress measurement in bore-driven swash. Coast. Engng 56 (8), 853867.Google Scholar
Berberovic, E., Hinsberg, N. P., van Jakirlic, S., Roisman, I. V. & Tropea, C. 2009 Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys. Rev. E 79, 036306.Google Scholar
Boussinesq, J. 1872 Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55108.Google Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.Google Scholar
Brenninkmeyer, S. J. 1976 In situ measurements of rapidly fluctuating, high sediment concentrations. Mar. Geol. 20, 117128.Google Scholar
Briganti, R., Torres-Freyermuth, A., Baldock, T. E., Brocchini, M., Dodd, N., Hsu, T.-J., Jiang, Z., Kim, Y., Pintado-Patiño, J. C. & Postacchini, M. 2016 Advances in numerical modeling of swash zone dynamics. Coast. Engng 115, 2641.Google Scholar
Cabral, B. & Leedom, L. C. 1993 Imaging vector fields using line integral convolution. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. pp. 263270. ACM.Google Scholar
Chang, K. A. & Liu, P. L.-F. 2000 Pseudo turbulence in PIV breaking wave measurements. Exp. Fluids 29, 331338.Google Scholar
Chardón-Maldonado, P., Pintado-Patiño, J. C. & Puleo, J. A. 2016 Advances in swash-zone research: small-scale hydrodynamic and sediment transport processes. Coast. Engng 115, 825.CrossRefGoogle Scholar
Chow, V. T. 1973 Open-Channel Hydraulics. McGraw-Hill.Google Scholar
Cowen, E. A. & Monismith, S. G. 1997 A hybrid digital particle tracking velocimetry technique. Exp. Fluids 22, 199211.Google Scholar
Cowen, E. A., Sou, I.-M., Liu, P. L.-F. & Raubenheimer, B. 2003 Particle image velocimetry measurements within a laboratory-generated swash zone. J. Engng Mech. 129 (10), 11191129.Google Scholar
Deshpande, S. S., Anumolu, L. & Trujillo, M. F. 2012 Evaluating the performance of the two-phase flow solver InterFoam. Comput. Sci. Disc. 5, 014016.Google Scholar
Devolder, B., Rauwoens, P. & Troch, P. 2017 Application of a buoyancy-modified k-𝜔 SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM® . Coast. Engng 125, 8194.Google Scholar
Elfrink, B. & Baldock, T. 2002 Hydrodynamics and sediment transport in the swash zone: a review and perspectives. Coast. Engng 45 (3), 149167.CrossRefGoogle Scholar
Francois, M. M., Cummins, S. J., Dendy, E. D., Kothe, D. B., Sicilian, J. M. & Williams, M. W. 2006 A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys. 213, 141173.Google Scholar
Gopala, V. R. & van Wachem, B. G. M. 2008 Volume of fluid methods for immiscible-fluid and free-surface flows. Chem. Engng J. 141, 204221.Google Scholar
Goring, D. G.1978 Tsunami: the propagation of long waves onto a shelf. Tech. Rep. KH-R-38, W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, California, USA.Google Scholar
Grilli, S. T., Svendsen, I. A. & Subramanya, R. 1997 Breaking criterion and characterisitics for solitary waves on slopes. J. Waterways Port Coast. Ocean Engng 123 (3), 102112.Google Scholar
Grimshaw, R. 1971 The solitary wave in water of variable depth. Part 2. J. Fluid Mech. 46, 611622.Google Scholar
Gupta, N. 1993 An analytic solution describing the motion of a bore over a sloping beach. J. Fluid Mech. 253, 167172.Google Scholar
Higuera, P., Lara, J. L. & Losada, I. J. 2013a Realistic wave generation and active wave absorption for Navier–Stokes models: application to OpenFOAM. Coast. Engng 71, 102118.Google Scholar
Higuera, P., Lara, J. L. & Losada, I. J. 2013b Simulating coastal engineering processes with OpenFOAM. Coast. Engng 71, 119134.Google Scholar
Higuera, P., Lara, J. L. & Losada, I. J. 2014 Three–dimensional interaction of waves and porous coastal structures using OpenFOAM. Part I: formulation and validation. Coast. Engng 83, 243258.Google Scholar
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluif (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201225.Google Scholar
Ho, D. V. & Meyer, R. E. 1962 Climb of a bore on a beach. Part 1. Uniform beach slope. J. Fluid Mech. 14 (2), 305318.Google Scholar
Holthuijsen, L. H. 2010 Waves in Oceanic and Coastal Waters. Cambridge University Press.Google Scholar
Jasak, H.1996 Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College of Science, Technology and Medicine.Google Scholar
Keane, R. D. & Adrian, R. J. 1992 Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49, 191215.Google Scholar
Keller, H. B., Levine, D. A. & Whitman, G. B. 1960 Motion of a bore over a sloping beach. J. Fluid Mech. 7 (2), 302316.CrossRefGoogle Scholar
Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S. & Zanetti, G. 1994 Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys. 113, 134147.Google Scholar
Lin, C., Hseih, S. C., Lin, I. J., Chang, K. A. & Raikar, R. 2012 Flow property and self-similarity in steady hydraulic jumps. Exp. Fluids 53, 15911616.Google Scholar
Lin, C., Kao, M.-J., Tzeng, G.-W., Wong, W.-Y., Yang, J., Raikar, R. V., Wu, T.-R. & Liu, P. L.-F. 2015a Study on flow fields of boundary-layer separation and hydraulic jump during rundown motion of shoaling solitary wave. J. Earthquake Tsunami 9 (5), 1540002.Google Scholar
Lin, C., Yeh, P. H., Hseih, S. C., Shih, Y. N., Lo, L. F. & Tsai, C. P. 2014 Pre-breaking internal velocity field induced by a solitary wave propagating over a 1:10 slope. Ocean Engng 80, 112.Google Scholar
Lin, C., Yeh, P. H., Kao, M. J., Yu, M. H., Hseih, S. C., Chang, S. C., Wu, T. R. & Tsai, C. P. 2015b Velocity fields in near-bottom and boundary layer flows in pre-breaking zone of solitary wave propagating over a 1:10 slope. J. Waterways Port Coast Ocean Engng 141 (3), 04014038.Google Scholar
Liu, P. L.-F. & Cho, Y.-S. 1994 Integral equation model for wave propagation with bottom frictions. J. Waterway Port Coast Ocean Engng 120, 594608.Google Scholar
Lo, H.-Y., Park, Y. S. & Liu, P. L.-F. 2013 On the run-up and back-wash processes of single and double solitary waves—An experimental study. Coast. Engng 80, 114.Google Scholar
Lubin, P., Vincent, S., Abadie, S. & Caltagirone, J.-P. 2006 Three-dimensional large Eddy simulation of air entrainment under plunging breaking waves. Coast. Engng 53 (8), 631655.Google Scholar
Masselink, G. & Puleo, J. A. 2006 Swash-zone morphodynamics. Cont. Shelf Res. 26, 661680.Google Scholar
Matsunaga, N. & Honji, H. 1980 The backwash vortex. J. Fluid Mech. 99 (4), 813815.Google Scholar
O’Donoghue, T., Pokrajak, D. & Hondebrink, L. J. 2010 Laboratory and numerical study of dambreak-generated swash on impermeable slopes. Coast. Engng 57, 513530.Google Scholar
Omenyi, S. N., Smith, R. P. & Neumann, A. W. 1980 Determination of solid/melt interfacial tensions and of contact angles of small particles from the critical velocity of engulfing. J. Colloid Interface Sci. 75 (1), 117125.Google Scholar
Peregrine, D. H. 1974 Surface shear waves. J. Hydraul. Div. 100 (9), 12151227.CrossRefGoogle Scholar
Pilliod, J. E. & Puckett, E. G. 2004 Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199 (2), 465502.Google Scholar
Pintado-Patiño, J. C., Torres-Freyermuth, A., Puleo, J. A. & Pokrajac, D. 2015 On the role of infiltration and exfiltration in swash zone boundary layer dynamics. J. Geophys. Res. 120, 63296350.Google Scholar
Pujara, N., Liu, P. L.-F. & Yeh, H. 2015 The swash of solitary waves on a plane beach: flow evolution, bed shear stress and run-up. J. Fluid Mech. 779, 556597.CrossRefGoogle Scholar
Puleo, J. A., Holland, K. T., Slinn, D. N., Smith, E. & Webb, B. M. 2002 Numerical modelling of swash zone hydrodynamics. In 28th International Coastal Engineering Conference (ICCE), Cardiff, Wales, pp. 968979.Google Scholar
Roenby, J., Bredmose, H. & Jasak, H. 2016 A computational method for sharp interface advection. R. Soc. Open Sci. 3, 160405.Google Scholar
Schlichting, H. 1979 Boundary Layer Theory, 7th edn. McGraw-Hill.Google Scholar
Shen, M. C. & Meyer, R. E. 1963 Climb of a bore on a beach. Part 3. Run-up. J. Fluid Mech. 16 (1), 113125.Google Scholar
Smith, L., Jensen, A. & Pedersen, G. 2017 Investigation of breaking and non-breaking solitary waves and measurements of swash zone dynamics on a 5° beach. Coast. Engng 120, 3846.Google Scholar
Sou, I.-M., Cowen, E. A. & Liu, P. L.-F. 2010 Evolution of the turbulence structure in the surf and swash zones. J. Fluid Mech. 644, 193216.Google Scholar
Sumer, B. M., Guner, H. A. A., Hansen, N. M., Fuhrman, D. R. & Fredsøe, J. 2013 Laboratory observations of flow and sediment transport induced by plunging regular waves. J. Geophys. Res. 118, 61616182.Google Scholar
Sumer, B. M., Jensen, P. M., Sørensen, L. B., Fredsøe, J., Liu, P. L.-F. & Carstensen, S. 2010 Coherent structures in wave boundary layers. Part 2. Solitary motion. J. Fluid Mech. 646, 207231.Google Scholar
Sumer, B. M., Sen, M. B., Karagali, I., Ceren, B., Fredsøe, J., Sottile, M., Zilioli, L. & Fuhrman, D. R. 2011 Flow and sediment transport induced by a plunging solitary wave. J. Geophys. Res. 116, C01008.Google Scholar
Synolakis, C. E. 1987 The runup of solitary waves. J. Fluid Mech. 185, 523545.CrossRefGoogle Scholar
Torres-Freyermuth, A., Puleo, J. A. & Pokrajac, D. 2013 Modeling swash-zone hydrodynamics and shear stresses on planar slopes using Reynolds-averaged Navier–Stokes equations. J. Geophys. Res. 118 (2), 10191033.Google Scholar
Vukcevic, V., Jasak, H. & Gatin, I. 2017 Implementation of the ghost fluid method for free surface flows in polyhedral finite volume framework. Comput. Fluids 153, 119.Google Scholar
Weller, H., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.Google Scholar
Supplementary material: File

Higuera et al. supplementary material

Higuera et al. supplementary material 1

Download Higuera et al. supplementary material(File)
File 8.2 MB