Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

'Inverse' melting of a vortex lattice

Abstract

Inverse melting is the process in which a crystal reversibly transforms into a liquid or amorphous phase when its temperature is decreased. Such a process is considered to be very rare1, and the search for it is often hampered by the formation of non-equilibrium states or intermediate phases2. Here we report the discovery of first-order inverse melting of the lattice formed by magnetic flux lines in a high-temperature superconductor. At low temperatures, disorder in the material pins the vortices, preventing the observation of their equilibrium properties and therefore the determination of whether a phase transition occurs. But by using a technique3 to ‘dither’ the vortices, we were able to equilibrate the lattice, which enabled us to obtain direct thermodynamic evidence of inverse melting of the ordered lattice into a disordered vortex phase as the temperature is decreased. The ordered lattice has larger entropy than the low-temperature disordered phase. The mechanism of the first-order phase transition changes gradually from thermally induced melting at high temperatures to a disorder-induced transition at low temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Local magnetization loops in BSCCO crystals with and without (open circles) ‘vortex dithering’.
Figure 2: Reversible magnetization steps revealed in BSCCO crystals by ‘vortex dithering’ at various temperatures.
Figure 3: The first-order transition line and the inverse melting obtained with ‘vortex dithering’.
Figure 4: Magnetization step and the negative latent heat.

Similar content being viewed by others

References

  1. Greer, A. L. Too hot to melt. Nature 404, 134–135 (2000).

    Article  CAS  Google Scholar 

  2. Rastogi, S., Höhne, G. W. H. & Keller, A. Unusual pressure-induced phase behaviour in crystalline poly(4-methylpentence-1): calorimetric and spectroscopic results and further implications. Macromolecules 32, 8897–8909 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Willemin, M. et al. First-order vortex-lattice melting transition in YBa2Cu3O7 near the critical temperature detected by magnetic torque. Phys. Rev. Lett. 81, 4236–4239 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Zeldov, E. et al. Thermodynamic observation of first-order vortex-lattice melting transition. Nature 375, 373–376 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Ooi, S., Shibauchi, T. & Tamegai, T. Evolution of vortex phase diagram with oxygen-doping in Bi2Sr2CaCu2O8+y single crystals. Physica C 302, 339–345 (1998).

    Article  ADS  CAS  Google Scholar 

  6. T. W. Li et al. Growth of Bi2Sr2CaCu2O8+x single-crystals at different oxygen ambient pressures. J. Cryst. Growth 135, 481–486 (1994).

    Article  ADS  Google Scholar 

  7. Blatter, G. et al. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Pastoriza, H., Goffman, M. F., Arribere, A. & de la Cruz, F. First order phase transition at the irreversibility line of Bi2Sr2CaCu2O8. Phys. Rev. Lett. 72, 2951–2954 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Koshelev, A. E. Crossing lattices, vortex chains, and angular dependence of melting line in layered superconductors. Phys. Rev. Lett. 83, 187–190 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Burlachkov, L., Koshelev, A. E. & Vinokur, V. M. Transport properties of high-temperature superconductors: surface vs bulk effect. Phys. Rev. B 54 6750–6757 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Zeldov, E. et al. Geometrical barriers in high-temperature superconductors. Phys. Rev. Lett. 73, 1428–1431 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Safar, H. et al. Experimental evidence for a first-order vortex-lattice-melting transition in untwinned single crystal YBa2Cu3O7. Phys. Rev. Lett. 69, 824–827 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Kwok, W. K. et al. Vortex lattice melting in untwinned and twinned single-crystals of YBa2Cu3O7-δ. Phys. Rev. Lett. 69, 3370–3373 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Khaykovich, B. et al. Vortex lattice phase transitions in Bi2Sr2CaCu2O8 crystals with different oxygen stoichiometry. Phys. Rev. Lett. 76, 2555–2558 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Chikumoto, N., Konczykowski, M., Motohira, N. & Malozemoff, A. P. Flux-creep crossover and relaxation over surface barriers in Bi2Sr2CaCu2O8 crystals. Phys. Rev. Lett. 69, 1260–1263 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Deligiannis, K. et al. New features in the vortex phase diagram of YBa2Cu3O7. Phys. Rev. Lett. 79, 2121–2124 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Cubitt, R. et al. Direct observation of magnetic flux lattice melting and decomposition in the high-Tc superconductor Bi2Sr2CaCu2O8. Nature 365, 407–411 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Giamarchi, T. & Le Doussal, P. Elastic theory of pinned flux lattice. Phys. Rev. Lett. 72, 1530–1533 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Nattermann, T. & Scheidl, S. Vortex-glass phases in type-II superconductors. Adv. Phys. 49, 607–704 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Ertas, D. & Nelson, D. R. Irreversibility, entanglement and thermal melting in superconducting vortex crystals with point impurities. Physica C 272, 79–86 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Giller, D. et al. Disorder-induced transition to entangled vortex-solid in Nd-Ce-Cu-O crystal. Phys. Rev. Lett. 79, 2542–2545 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Gaifullin, M. B. et al. Abrupt change of Josephson plasma frequency at the phase boundary of the Bragg glass in Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 84, 2945–2948 (2000).

    Article  ADS  CAS  Google Scholar 

  23. van der Beek, C. J., Colson, S., Indenbom, M. V. & Konczykowski, M. Supercooling of the disordered vortex lattice in Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 84, 4196–4199 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Giller, D., Shaulov, A., Tamegai, T. & Yeshurun, Y. Transient vortex states in Bi2Sr2CaCu2O8+δ crystals. Phys. Rev. Lett. 84, 3698–3701 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Kierfeld, J. & Vinokur, V. Dislocations and the critical endpoint of the melting line of vortex line lattices. Phys. Rev. B 61, R14928–R14931 (2000).

    Article  ADS  CAS  Google Scholar 

  26. Nonomura, Y. & Hu, X. Effects of point defects on the phase diagram of vortex states in high-Tc superconductors in B∥c axis. Preprint cond-mat/0011349 at 〈http://xxx.lanl.gov〉 (2000).

  27. Olsson, P. & Teitel, S. Disorder driven melting of the vortex line lattice. Preprint cond-mat/0012184 at 〈http://xxx.lanl.gov〉 (2000).

  28. Paltiel, Y. et al. Instabilities and disorder-driven first-order transition of the vortex lattice. Phys. Rev. Lett. 85, 3712–3715 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Reichhardt, C., van Otterlo, A. & Zimányi, G. T. Vortices freeze like window glass: the vortex molasses scenario. Phys. Rev. Lett. 84, 1994–1997 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Fuchs, D. T. et al. Possible new vortex matter phases in Bi2Sr2CaCu2O8. Phys. Rev. Lett. 80, 4971–4974 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. B. Geshkenbein for valuable discussions. This work was supported by the Israel Science Foundation – Center of Excellence Program, by the Minerva Foundation, Germany, by the Mitchell Research Fund, and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan. D.E.F. acknowledges support from a Koshland Fellowship and an RFBR grant. P.K. and M.L. acknowledge support from the Dutch Foundation FOM. E.Z. acknowledges support from the Fundacion Antorchas – WIS program and from the Ministry of Science, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurit Avraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avraham, N., Khaykovich, B., Myasoedov, Y. et al. 'Inverse' melting of a vortex lattice. Nature 411, 451–454 (2001). https://doi.org/10.1038/35078021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing